Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

Dérivabilité terminale



  1. #1
    theguitarist

    Dérivabilité terminale


    ------

    bonjour à tous

    Pour m'entrainer à mon DS de demain, je fais des exercices mais je cale sur cette question :

    on a la fonction suivante :

    f(x)= (1-cos x)/x si x different de 0, et f(0)=0

    il fallait tout d'abord montrer qu'elle est continue sur R, jusque là pas de problème

    mais maintenant il faut montrer que f est dérivable en zero... la je bloque !

    Quelqu'un pourrait m'aider ? merci d'avance !

    -----

  2. Publicité
  3. #2
    zeratul

    Re : dérivabilité terminale

    Salut!

    On voit tout de suite l'expression d'une dérivée en un point particulier . Cela veut dire que ta fonction est dérivable en ce point. Alors, reste plus qu'à trouver cette dérivée!
    C'est pas bien dur : essaye de retrouver l'expression : f'(a)= f(x)-f(a) / x-a.

    J'espere que ca va t'aider!
    Just remember to always think twice

  4. #3
    LoLLoLLoL

    Re : dérivabilité terminale

    Derives sur R* et montre que lim de la derivée en 0 existe.

  5. #4
    zeratul

    Re : dérivabilité terminale

    Citation Envoyé par LoLLoLLoL Voir le message
    Derives sur R* et montre que lim de la derivée en 0 existe.
    J'ai pas l'impression que cette méthode marche...peut-etre que je me trompe?
    Just remember to always think twice

  6. #5
    theguitarist

    Re : dérivabilité terminale

    alors j'ai fait la première technique énoncée, et je trouve

    f'(0)=(1-cos x)/x²

    on doit faire quoi après ? :s:s

  7. A voir en vidéo sur Futura
  8. #6
    LoLLoLLoL

    Re : dérivabilité terminale

    1-cosx est equivalent à quoi en 0 ?

  9. Publicité
  10. #7
    theguitarist

    Re : dérivabilité terminale

    ben... 1-cos x = 0 donc 1 = cos x soit x = 0

    mais x²=0 donc ca reste une valeur interdite...

  11. #8
    LoLLoLLoL

    Re : dérivabilité terminale

    1-cosx est euivalent à x²/2 en 0, il te suffit de poser f'(0)=1/2.

  12. #9
    theguitarist

    Re : dérivabilité terminale

    lol on le sort d'ou le x²/2 ?

  13. #10
    LoLLoLLoL

    Re : dérivabilité terminale

    Essaye d'encadrer cosx-1.

  14. #11
    theguitarist

    Re : dérivabilité terminale

    ....aie..j'y arrive pas...a mon avis tout le problème doit venir d'ici...

  15. #12
    theguitarist

    Re : dérivabilité terminale

    Personne ne sait comment on peut passer de cos x -1 à x²/2 en l'encadant ? ^^

  16. Publicité
  17. #13
    S321

    Re : dérivabilité terminale

    Bonjour.
    J'ai mis un peu de temps à trouver une méthode qui ne fasse pas appel aux développement de Taylor, un outil extrêmement utile qui permet à un initié de lever les formes indéterminées les plus compliquées d'un simple coup d'œil.

    On veut montrer qu'on a toujours 1-cos(x)<x²/2.
    On pose f(x)=1-cos(x)-x²/2
    f(0)=0
    On dérive f ce qui donne f'(x)=sin(x)-x
    f'(0)=0
    on dérive de nouveau pour obtenir f''(x)=cos(x)-1
    f'' est toujours négative donc f' est toujours décroissante, comme f'(0)=0 on a que f' est positif avant 0 et négatif après 0.
    Donc f est croissante avant 0 et décroissante après. Comme f(0)=0 on a bien que f est toujours négative.
    On a donc bien 0<1-cos(x)<x²/2
    tu n'as plus qu'à conclure.

  18. #14
    lapin savant

    Re : dérivabilité terminale

    Bonjour,
    je rappelle qu'il s'agit d'un exercice de terminale, pourquoi lui présenter des choses si tordues alors que la question est si simple ?!
    Comme l'a suggéré la 1ere personne qui a répondu (zeratul), il suffit de remarquer que f est le taux d'accroissement de cos en 0:


    et comme l'on sait que cos est dérivable en 0, la limite existe et c'est bon.


    edit: cela suppose bien évidemment que cette personne connaisse la fonction cosinus sur R, et que l'objet de l'exercice ne soit pas son étude
    "Et pourtant, elle tourne...", Galilée.

  19. #15
    mirey

    Re : Dérivabilité terminale

    tu dois savoir que tu n'as pas le droit d'écrire f'(0) tant que tu n'as pas vérifié que f est dérivable en 0. pour étudier la dérivabilité de f en 0 il suffit de calculer la lim lorsque x tend vers 0 de
    (f(x)-f(0))/(x-0)=(1-cosx)/x^2 et cette limite est très connue dans les limites trigonométriques et elle est égale à 1/2 donc c une valeur finie alors f est dérivable en 0

  20. #16
    lapin savant

    Re : Dérivabilité terminale

    Exact, sauf que la fonction en question n'est pas cos, mais (1-cos x)/x.
    On peut donc penser qu'il a le droit d'utiliser ses connaissances sur la fontion trigo, notamment le fait qu'elle est dérivable en 0.

    Je le répète, ceci est valable si l'objet de la question n'est pas de montrer que cos est dérivable en 0.
    edit : mais je suis d'accord avec toi ! le calcul de cette limite me semble juste un peu délicat (à en juger par les messages postés) pour une personne de terminale
    "Et pourtant, elle tourne...", Galilée.

  21. #17
    lapin savant

    Re : Dérivabilité terminale

    ERRATUM ne pas tenir compte de mon post précédent !
    Je te donne raison mirey
    "Et pourtant, elle tourne...", Galilée.

  22. #18
    mirey

    Re : Dérivabilité terminale

    ok c pas grave et merci

  23. Publicité
  24. #19
    LoLLoLLoL

    Re : Dérivabilité terminale

    Ok pour la terminale mais bon c'est qu'une histoire de limite....

  25. #20
    S321

    Re : Dérivabilité terminale

    Remarquez que c'est tout de même en terminale que les exos sur les limites sont les plus difficiles. On voit les développement de Taylor en première année postbac ce qui rend toutes les études de limites triviales (si on manipule des fonctions suffisamment régulière tout de même).

Discussions similaires

  1. terminale STL apres une terminale S
    Par ynot13 dans le forum Orientation avant le BAC
    Réponses: 24
    Dernier message: 07/10/2012, 16h26
  2. Passer d'une Terminale S à une Terminale STI... possible ?
    Par worms91 dans le forum Orientation avant le BAC
    Réponses: 1
    Dernier message: 13/02/2009, 06h57
  3. dérivabilité
    Par Lola33 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 07/01/2009, 17h18
  4. Dérivabilité
    Par HeyJude dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 23/05/2008, 21h13
  5. Derivabilité en 0
    Par charly dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 07/10/2005, 08h10