j'ai Uo = 1, U(n+1)=RAC(2 * (Un) - 1), 1 < Un < 2, et Un < U(n+1).
Je dois démontrer par récurrence que 0 < 2 - Un < 1/(2^n).
Pouvez vous m'apportez quelques pistes ? Merci d'avance.
-----
04/09/2010, 19h21
#2
inviteec33ac08
Date d'inscription
janvier 1970
Messages
817
Re : Exercice suite
Ben pour u0 sa marche.
Ensuite tu fait l'hérédité, tu fixe un n entier naturel et tu montre P(n)=>P(n+1) avec comme hypothèse de récurrence
0 < 2 - Un < 1/(2^n) et tu dois montrer 0 < 2 - U(n+1) < 1/(2^(n+1))
Pars de l'inégalité suivante 1 < Un < 2 normalement sa doit marcher =)