polynôme de degré 3
Répondre à la discussion
Affichage des résultats 1 à 19 sur 19

polynôme de degré 3



  1. #1
    invitee0e852f5

    polynôme de degré 3


    ------

    bonjours a tous j’aurai besoin d'un coup de main pour un DM de math niveau 1er S
    j'ai P courbe représentative de f dans R avec f(x)=(1/2)x(4-x)
    et H // // g dans R privé de 3 avec g(x)= (x-4)/(x-3)
    je dois déterminer les coordonnées des points d'intersection des courbes P et H
    je fait donc : f(x)=g(x)
    ce qui me donne : -(1/2)x^3 +(7/2)x² -7x +4 = 0
    c'est un polynôme de degrés 3 j'ai fait le cours sur les polynôme mais je ne trouve pas comment résoudre ceci avec ce que j'ai a ma disposition

    voila, si quelqu'un peut m'éclairer sa serai sympa .

    -----

  2. #2
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    Citation Envoyé par totor21 Voir le message
    bonjours a tous j’aurai besoin d'un coup de main pour un DM de math niveau 1er S
    j'ai P courbe représentative de f dans R avec f(x)=(1/2)x(4-x)
    et H // // g dans R privé de 3 avec g(x)= (x-4)/(x-3)
    je dois déterminer les coordonnées des points d'intersection des courbes P et H
    je fait donc : f(x)=g(x)
    ce qui me donne : -(1/2)x^3 +(7/2)x² -7x +4 = 0
    c'est un polynôme de degrés 3 j'ai fait le cours sur les polynôme mais je ne trouve pas comment résoudre ceci avec ce que j'ai a ma disposition

    voila, si quelqu'un peut m'éclairer sa serai sympa .
    avant de foncer dans les calculs :
    tu as un ( 4-x) d'un coté et un (x-4) de l'autre...
    a toi de voir quoi en faire
    cordialement

  3. #3
    invitee0e852f5

    Re : polynôme de degré 3

    je trouve que 4 est solution de f(x)=0 et g(x)=0 j'en déduis que c'est une racine je peut donc mètre sous la forme (x-4)(ax²+bx+c)

  4. #4
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    sans oublier bien sur "l'evenement" x=4 !

  5. A voir en vidéo sur Futura
  6. #5
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    Citation Envoyé par totor21 Voir le message
    je trouve que 4 est solution de f(x)=0 et g(x)=0 j'en déduis que c'est une racine je peut donc mètre sous la forme (x-4)(ax²+bx+c)
    oui et non , bien vu le x=4, mais si tu sors de cette hypothèse tu peux tout diviser par ( x-4), c'est plus rapide
    ça evite l'equation du second degré

  7. #6
    inviteaf48d29f

    Re : polynôme de degré 3

    Bonsoir,
    lorsque vous écrivez f(x)-g(x), plutôt que de commencer par tout développer pour vous rendre compte ensuite que vous pouvez factoriser, peut-être deviez vous essayer de factoriser dés le départ.
    Ansset vous a indiqué un facteur commun, non ?

  8. #7
    invitee0e852f5

    Re : polynôme de degré 3

    ok merci donc je dit que je remarque le (x-4) et (x+4) et que si x=4 alors les f=0 et g=0 donc 4 est aussi solution du polynôme

  9. #8
    invitee0e852f5

    Re : polynôme de degré 3

    Citation Envoyé par S321 Voir le message
    Bonsoir,
    lorsque vous écrivez f(x)-g(x), plutôt que de commencer par tout développer pour vous rendre compte ensuite que vous pouvez factoriser, peut-être deviez vous essayer de factoriser dés le départ.
    Ansset vous a indiqué un facteur commun, non ?
    ah oui exacte je met des le départ (4-x) en facteur

  10. #9
    invitee0e852f5

    Re : polynôme de degré 3

    j'obtient (4-x)(1/2x² - 3/2x +1)/(x-3)=0 ce que je peut donc résoudre

  11. #10
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    reste à trouver la troisième racine ... et avec elegance mon ami
    je blague evidemment

  12. #11
    invitee0e852f5

    Re : polynôme de degré 3

    équation de produit nul j'ai donc x=4 ou avec le polynome 1 et 2

  13. #12
    invitee0e852f5

    Re : polynôme de degré 3

    ensuite je dois étudier algébriquement la position relative des courbes P et H j'étudie donc le signe de f(x)-g(x) je fait donc un tableau de signe avec x puis 4-x puis le trinôme/(x-3) puis f(x)-g(x)
    ce que je voudrai savoir c'est dois-je faire une ligne pour le trinôme et une pour (x-3) ou est ce que je met le trinôme/(x-3) dans la même ligne ?

  14. #13
    inviteaf48d29f

    Re : polynôme de degré 3

    C'est à vous de voir si en votre âme et conscience ça vous parait évident et suivant les manies de votre prof vous pouvez sauter la ligne de calcul.
    Personnellement si je devais faire l'étude du signe de f-g j'écrirais directement la dernière ligne (parce que je sais que les calculs n'intéresseraient pas mon prof), mais vous, je vous déconseille de conclure en une ligne sans rien justifier .

  15. #14
    invitee0e852f5

    Re : polynôme de degré 3

    ok merci bien

  16. #15
    invite25dcac38

    Re : polynôme de degré 3

    Citation Envoyé par totor21 Voir le message
    bonjours a tous j’aurai besoin d'un coup de main pour un DM de math niveau 1er S
    j'ai P courbe représentative de f dans R avec f(x)=(1/2)x(4-x)
    et H // // g dans R privé de 3 avec g(x)= (x-4)/(x-3)
    je dois déterminer les coordonnées des points d'intersection des courbes P et H
    je fait donc : f(x)=g(x)
    ce qui me donne : -(1/2)x^3 +(7/2)x² -7x +4 = 0
    c'est un polynôme de degrés 3 j'ai fait le cours sur les polynôme mais je ne trouve pas comment résoudre ceci avec ce que j'ai a ma disposition

    voila, si quelqu'un peut m'éclairer sa serai sympa .
    salu
    tu peut fair la division euclidienne par ce que tu 4 un racigne de la polynomme
    danc tu peut celle diviser par (x-4) OK !!!!

  17. #16
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    visiblement tu n'as pas tout le boulot;

    et pourtant les racines sont simples

  18. #17
    invite51d17075
    Animateur Mathématiques

    Re : polynôme de degré 3

    en excluant x=4', il te reste une equation plutôt simple
    heuuu plutôt , c'est pas en réference à disney !!! c est pas pluto !

  19. #18
    invitee0e852f5

    Re : polynôme de degré 3

    oui j'ai 1 2 et 4 qui dont solution de mon équation

  20. #19
    invitee0e852f5

    Re : polynôme de degré 3

    bonjour
    j'ai d'autre difficultés dans ce DM
    j'ai: détermier les réels am, bm et cm tels que
    mx^3 -7mx² +(16m+1)x -12m -2= (x-2)(amx²+bmx+cm)
    jusque la je pense avoir juste am=1m bm=-5m et cm=6m+1
    mais c'est ici que je bloque:
    déduire de la factorisation précédente l'ensemble des nombres réels m pour lesquels les courbes Pm et H ont: - un seul point commun
    - deux point commun
    - trois point commun
    (Pm représentation de fm: fm(x)=mx²-4mx+4m+2
    et H représentation de g : g(x)= (x-4)/(x-3) )
    j'ai une idées sur le problème: en utilisant (x-2)(mx²-5mx+6m+1)
    pour une solution: délata<0
    2 solution: délata=0
    3 solution delta>0
    mais je ne sais pas comment calculer ceci pour avoir mes ensemble de solution .
    merci de votre aide

Discussions similaires

  1. Polynome du second degre
    Par invite6c98ef6e dans le forum Mathématiques du collège et du lycée
    Réponses: 70
    Dernier message: 05/10/2009, 20h59
  2. Polynome second degré
    Par invite941dfd79 dans le forum Mathématiques du collège et du lycée
    Réponses: 0
    Dernier message: 01/10/2009, 19h52
  3. Polynome de degre 2
    Par invite5c559417 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 08/05/2009, 13h38
  4. Polynome du second degre.
    Par invitec34a5411 dans le forum Mathématiques du collège et du lycée
    Réponses: 23
    Dernier message: 03/12/2008, 17h39
  5. polynome, m paramètre , différentes valeurs degré du polynome
    Par invited7a80298 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 15/10/2007, 18h54