Aire sous la fonction exponentielle 0<=x<=1
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Aire sous la fonction exponentielle 0<=x<=1



  1. #1
    invite78409a5f

    Aire sous la fonction exponentielle 0<=x<=1


    ------

    Salut je suis un élève de terminale S, on vient de commencer les intégrales avec notre prof de maths et je me demandais quelle était l'aire sous la fonction exponetielle sur l'intervalle [0;1], j'ai fait ça mais je bloque:
    Soit n>=1
    et k<=-1
    je prends deux points M et N d’abscisses respectives k/n et (k+1)/n
    l'aire A d'un rectangle par excés est: ((k+1)/n-k/n)*exp((k+1)/n)
    soit A= exp((k+1)/n)/n
    Soit Sn la somme des Aires pour k allant de 0 à n-1
    Sn= A1+A2+A3+...+An-1
    Sn= exp(1/n)/n+exp(2/n)/n+exp(3/n)/n+...+exp(n/n)/n

    Après je fais Sn*exp(1/n)=exp(2/n)/n+exp(3/n)/n+...+exp(n/n)/n+exp((n+1)/n)/n

    Je fais alors:
    Sn*exp(1/n)-Sn=exp((n+1)/n)/n- exp(1/n)/n
    Sn(exp(1/n)-1)=[exp((n+1)/n)-exp(1/n)]/n
    Sn=[exp((n+1)/n)-exp(1/n)]/(n*(exp(1/n)-1))

    Et là j'utilise un calculateur de limites (à l'infini) sur internet, ça ne me donne pas de résultats, et quand j'écris la fonction sur ma calculette ça me met une erreur encore jamais vue hahaha! Pouvez-vous m'aider?

    -----

  2. #2
    invitea3eb043e

    Re : Aire sous la fonction exponentielle 0<=x<=1

    C'est ton dénominateur qui te fiche dedans car c'est une forme infini x zéro vu que exp(1/n) tend vers 1 quand n tend vers infini.
    Il y a des méthodes qui montrent que le dénominateur tend vers 1.

  3. #3
    invite78409a5f

    Re : Aire sous la fonction exponentielle 0<=x<=1

    C'est bon, le résultat est 1.718, j'ai du mal écrire au début!

  4. #4
    invite4842e1dc

    Re : Aire sous la fonction exponentielle 0<=x<=1

    Salut

    Conseil : Fais un dessin de la fonction f(x)=exp(x) entre 0 et 1 ( avec une "grande" échelle pour l'axe des x ) avec par exemple n=2 puis n=3 puis n=4 , ..etc...

    et compare la somme des aires de tous les rectangles (qui sont dessinés en fonction de n)

    avec calcul du nombre quand n tend vers +infini ( limite qui est égale à )

  5. A voir en vidéo sur Futura
  6. #5
    inviteaf48d29f

    Re : Aire sous la fonction exponentielle 0<=x<=1

    Citation Envoyé par ScopeFater Voir le message
    C'est bon, le résultat est 1.718, j'ai du mal écrire au début!
    Non, ça c'est une approximation du résultat, mais ce n'est pas le résultat. Sauf indication contraire on demande des résultats exacts en maths. De plus demander une limite à votre calculatrice ce n'est pas faire une démonstration. Vous ne faites que balancer un résultat (faux) sans justification, je vois mal un prof vous donner des points pour une telle réponse à une question ^^.

    Vous dites que vous venez juste de commencer les intégrales ce qui fait qu'il est difficile de savoir pour nous quelles sont les théorèmes à votre disposition. J'imagine que vous n'avez pas vu de théorème vous permettant directement de calculer sinon en passant par une somme de Riemann, il vous faut démontrer vers quoi converge votre somme.

Discussions similaires

  1. Aire sous la courbe (P,V)
    Par invite0de04844 dans le forum Physique
    Réponses: 5
    Dernier message: 14/08/2012, 13h49
  2. Aire sous la courbe!!!!!!!!!!!1
    Par invitedd99a2fc dans le forum Mathématiques du collège et du lycée
    Réponses: 15
    Dernier message: 01/12/2011, 20h11
  3. Aire sous la courbe!!!!!!!!!!!
    Par invitedd99a2fc dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 01/12/2011, 20h00
  4. Aire sous la courbe
    Par invite5655d108 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 03/07/2011, 00h01
  5. Aire sous la parabole
    Par invite700d1e38 dans le forum Mathématiques du collège et du lycée
    Réponses: 11
    Dernier message: 19/03/2008, 07h14