Dérivé d'une fonction
Répondre à la discussion
Affichage des résultats 1 à 21 sur 21

Dérivé d'une fonction



  1. #1
    invite24fe148d

    Unhappy Dérivé d'une fonction


    ------

    Bonjour,

    J'ai besoin d'aide pour un exercice :

    Quel est l'ensemble de défnition de la f(x) = (x^3+2x^2)/(x^2-1)
    Je sais qu'il faut faire x^2-1=0 Mais comment faire avec x2 ?

    -----

  2. #2
    invite33db7898

    Re : Dérivé d'une fonction

    x²-1=0

    (a+b)(a-b)=a²-b²

    alors

    x²-1= 0 ===> (x+1)(x-1)=0

    x=1 ou x=-1

    donc : D= R-(1,-1)

  3. #3
    invite24fe148d

    Re : Dérivé d'une fonction

    Merci beaucoup ! Je ne m'en souvenais plus !

    Je dois aussi calculer la dérivée de f(x) = (x³+2x²)/(x²-1)
    Je trouve 3x²-7x-2x³ Mais je ne suis pas sûre que ça soit le bon résultat sachant qu'après je dois montrer que f'(x) = xg(x)/(x²-1)²
    avec g(x) = x³-3x-4

    Pouvez vous m'aidez please !

  4. #4
    gg0
    Animateur Mathématiques

    Re : Dérivé d'une fonction

    Bonjour.

    Je trouve 3x²-7x-2x³
    Manifestement par pure invention !!
    Tu as à dériver un quotient, donc à appliquer la formule de dérivation adaptée.
    Tu n'apprendras rien en faisant faire tes exercices par d'autres sans apprendre tes leçons.

    On peut t'aider sur ce forum, mais il faut que tu fasses l'effort de t'aider toi-même. Comment dérive-t-on un quotient ?

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite24fe148d

    Re : Dérivé d'une fonction

    Avec la formule u/v qui donne u'v-uv'/v². Mon résultat est faut et je n'arrive pas à trouver la bonne réponse d'où ma demande d'aide.

  7. #6
    invite33db7898

    Re : Dérivé d'une fonction

    je trouve f'(x)=(x^4-3x²-4x)/(x²-1)²

    parceque la régle

  8. #7
    invite33db7898

    Re : Dérivé d'une fonction

    attendre 5 minutes je ecrive les étapes

  9. #8
    invite33db7898

    Re : Dérivé d'une fonction


  10. #9
    inviteaf48d29f

    Re : Dérivé d'une fonction

    Lui donner la solution et les étapes de calculs ne l'aidera pas à comprendre son problème. C'est simplement faire ses devoirs à sa place.

    AriaAllen, vous nous dites que vos calculs et votre résultats sont faux, mais si vous les gardez pour vous on ne peut pas vous aider à comprendre où vous vous êtes trompé. Le fait est que la dérivé de u/v est bien (u'v-uv')/v², si vous avez faux ce n'est pas ici (si ce n'est que vous ne mettez pas les parenthèses correctement).

    Edit : Et voila, merci infiniment A95 d'enseigner la solution de facilité à un élève de plus. A quoi bon étudier les mathématiques puisque d'autres gens peuvent les faire à votre place ?

  11. #10
    invite33db7898

    Cool Re : Dérivé d'une fonction

    as tu compris

  12. #11
    invite24fe148d

    Re : Dérivé d'une fonction

    Ce n'est pas une erreur de parenthèse, dans le détail je trouve exactement le même resultat que A95, seulement il me restait -3x² - 4x et je ne savais qu'on pouvait les simplifier à cause des puissances

  13. #12
    invite24fe148d

    Re : Dérivé d'une fonction

    Oui merci beaucoup de ton aide ! Je me suis trompé de signe, j'avais mis un + à la place d'un - ce qui me donnait 7x !Je ferai plus attention aux signes désormais Merci de ton aide !

  14. #13
    inviteaf48d29f

    Re : Dérivé d'une fonction

    Citation Envoyé par AriaAllen Voir le message
    Ce n'est pas une erreur de parenthèse, dans le détail je trouve exactement le même resultat que A95, seulement il me restait -3x² - 4x et je ne savais qu'on pouvait les simplifier à cause des puissances
    Vous avez écrit que la dérivé de u/v est u'v-uv'/v² or c'est faux. La dérivée de u/v c'est (u'v-uv')/v², votre parenthésage était faux. Vous connaissez la formule correctement mais ne faites pas attention à ce que vous écrivez.

  15. #14
    invite33db7898

    Re : Dérivé d'une fonction

    oui
    les signes trés importants

  16. #15
    inviteaf48d29f

    Re : Dérivé d'une fonction

    En effet, AriaAllen aurait bien besoin de s’entraîner à faire des calculs pour éviter les erreurs de signes (entre autre). C'est probablement la raison pour laquelle son enseignant lui a donné cet exercice à faire, mais puisque tu l'as fait à sa place il lui suffit simplement de recopier tes calculs plutôt que des les faire lui-même.
    Ainsi il aura une bonne note à son dm et ne sera pas plus en mesure de faire correctement des calculs grâce à ton aide A95. Ce forum est sensé aider des étudiants à progresser en mathématiques, pas les gêner dans leurs études.

  17. #16
    invite24fe148d

    Re : Dérivé d'une fonction

    Je répète que j'avais les mêmes détails de calculs que A95 il m'a simplement aider à trouver mon erreur (que j'ai trouvé) je serai plus attentive lors de devoirs en classe et je ferai attention aux signes ainsi qu'aux puissances. Il ne m'a pas donner le résultat, il m'a simplement aider.

  18. #17
    invite33db7898

    Re : Dérivé d'une fonction

    merci bcp , S321

    mais j'aide juste pour trouver les erreur

  19. #18
    JPL
    Responsable des forums

    Re : Dérivé d'une fonction

    Sinon je précise à nouveau au nom de la modération qu'on ne doit jamais donner les solutions aux exercices, mais uniquement des pistes pour que le demandeur puisse trouver par lui-même. C'est clairement indiqué dans les messages importants en tête du forum : http://forums.futura-sciences.com/ma...tml#post918591
    Rien ne sert de penser, il faut réfléchir avant - Pierre Dac

  20. #19
    invite33db7898

    Re : Dérivé d'une fonction

    Je n'ai pas donné la solution du tous les devoirs

  21. #20
    invite33db7898

    Re : Dérivé d'une fonction

    Citation Envoyé par JPL Voir le message
    Sinon je précise à nouveau au nom de la modération qu'on ne doit jamais donner les solutions aux exercices, mais uniquement des pistes pour que le demandeur puisse trouver par lui-même. C'est clairement indiqué dans les messages importants en tête du forum : http://forums.futura-sciences.com/ma...tml#post918591


    bon

    je suis désolé

  22. #21
    invite24fe148d

    Re : Dérivé d'une fonction

    Clairement oui. Ce n'était qu'une question parmi tant d'autres dans mon dm de maths. N'en faites pas trop non plus.
    Et je persiste à dire que j'avais déjà le calcul et qu'il m'a juste aider à trouver mon erreur.

Discussions similaires

  1. Dérivé d'une fonction
    Par invite0a7791c7 dans le forum Mathématiques du collège et du lycée
    Réponses: 39
    Dernier message: 02/12/2012, 20h49
  2. Dérivé d'une fonction ln
    Par invitec498786e dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 20/06/2010, 13h54
  3. Dérivé d'une fonction
    Par invitebe8723ff dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 26/04/2009, 08h27
  4. Dérivé d'une fonction integrale
    Par invitebe08d051 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 22/02/2009, 15h03
  5. dérivé d'une fonction
    Par invitea167dcf8 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 04/01/2008, 18h06