Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

fonction et primitive



  1. #1
    eleve800

    fonction et primitive


    ------

    Bonjour,
    Je fais un exercice pour m'entrainer pendant les vacances mais je bloque sur les questions , voici l'énoncé et ce que j'ai fait jusqu'ici :

    Soit f une fonction dérivable sur I de R et a une fonction continue sur I telle que f'(x)=a(x)f(x) pour tout x dans I.

    1) Pourquoi a admet au moins une primitive sur I notée A
    -> toute fonction continue sur un intervalle I admet au moins une primitive sur I, a étant continue elle admet au moins une primitive sur I notée A.

    2)montrer que F(x)=f(x)e^(-A(x)) est dérivable sur I et la dériver
    -> on sait que f dérivable sur I, A primitive de a donc dérivable sur I , donc par produit F dérivable sur I?
    F'(x)=f'(x)e^(-A(x))+f(x)*-Ae^(-A(x)) =f(x)(e^(-A(x))(a(x)-A) (là je ne suis pas sûre du tout..)

    3)déduire qu'il existe un réel K tel que f(x)=Ke^(A(x)) (pour tout x appartennant à I)

    4)pour chaque cas ,determiner toutes les fonctions f vérifiant cette égalité :

    a)f'(x)=3f(x) I=R
    b)f'(x)=(-1/x)f(x) I=]-infini,0[
    c)f'(x)=(1/x)f(x),I=[1,2]
    d)f'(x)=2xf(x)I=R

    Merci d'avance de votre aide !!

    -----

  2. Publicité
  3. #2
    PlaneteF

    Re : fonction et primitive

    Bonjour,

    Citation Envoyé par eleve800 Voir le message
    F'(x)=f'(x)e^(-A(x))+f(x)*-Ae^(-A(x)) = (...)
    C'est faux là où j'ai mis en rouge dans ta citation.
    Dernière modification par PlaneteF ; 23/08/2013 à 10h35.

  4. #3
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    deux fois faux pour précision:
    dans l'écriture ( confusion entre une fonction et sa valeur en un point )
    dans le calcul de la dérivée.

  5. #4
    eleve800

    Re : fonction et primitive

    Citation Envoyé par PlaneteF Voir le message
    Bonjour,

    C'est faux là où j'ai mis en rouge dans ta citation.
    F'(x)=f'(x)e^(-A(x))+f(x)*-a(x)e^(-A(x)) plutôt ?

  6. A voir en vidéo sur Futura
  7. #5
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    qu est-ce que a(x) ?

  8. #6
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    pardon, A est une primitive de a, donc
    F'(x)=f'(x)e^(-A(x))+f(x)*-a(x)e^(-A(x)) est juste.
    qu'en deduire pour F'(x) ?

  9. Publicité
  10. #7
    eleve800

    Re : fonction et primitive

    F'(x)=0? ( si on remplace f'(x) par a(x)f(x) ?)

  11. #8
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    oui, donc F(x)=? et donc f s'ecrit sous la forme ?

  12. #9
    eleve800

    Re : fonction et primitive

    F(x)=K , et f est la dérivée de F(x) donc f(x)=1?

  13. #10
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    F(x)=cte K oui mais
    f n'est pas la dérivée de F,
    enoncé :
    F(x)=f(x)e(-A(x))

    donc si F(x)=K
    f(x)=Ke(A(x))

  14. #11
    PlaneteF

    Re : fonction et primitive

    Citation Envoyé par eleve800 Voir le message
    F(x)=K , et f est la dérivée de F(x) donc f(x)=1?


    Doublement faux : f n'est pas la dérivée de F, ... et si c'était quand même le cas, cela ne donnerait pas f(x)=1
    Dernière modification par PlaneteF ; 23/08/2013 à 12h00.

  15. #12
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    Citation Envoyé par eleve800 Voir le message
    F(x)=K , et f est la dérivée de F(x) donc f(x)=1?
    et ceci est assez effrayant comme déduction.

    EDIT: croisement avec PlaneteF

  16. Publicité
  17. #13
    eleve800

    Re : fonction et primitive

    Citation Envoyé par PlaneteF Voir le message


    Doublement faux : f n'est pas la dérivée de F, ... et si c'était quand même le cas, cela ne donnerait pas f(x)=1
    Oui pardon cela donnerait f(x)=0..

  18. #14
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    tu t'égares.
    Dernière modification par ansset ; 23/08/2013 à 12h05.

  19. #15
    PlaneteF

    Re : fonction et primitive

    Citation Envoyé par ansset Voir le message
    EDIT: croisement avec PlaneteF
    ... qui moi-même avait partiellement croisé avec toi
    Dernière modification par PlaneteF ; 23/08/2013 à 12h07.

  20. #16
    eleve800

    Re : fonction et primitive

    Bon merci de votre aide je ne vais pas me ridiculiser encore plus... le pire est que j'ai eu 18 au bac de maths ... les vacances m'ont fait perdre de mes capacités il faut que je m'y remette !

  21. #17
    ansset
    Animateur Mathématiques

    Re : fonction et primitive

    pas de soucis.
    c'est bien d'en prendre conscience.
    cordialement

Discussions similaires

  1. Primitive d'une fonction
    Par thesmok dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 25/04/2011, 19h32
  2. Fonction Primitive
    Par safi-hitman dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 19/01/2011, 10h13
  3. primitive d'une fonction sin²
    Par izabL dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 24/09/2010, 00h13
  4. Primitive d'une fonction
    Par dano57 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 19/05/2009, 18h22
  5. Primitive de la fonction ln
    Par merabti.nabila@neuf.fr dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 08/04/2006, 20h52