Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

[Trigonométrie] Triangle équilatéral !




  1. #1
    Cech

    [Trigonométrie] Triangle équilatéral !

    Salut !

    Dans un bouquin un auteur (deux inconnus déjà lol) a choisit de prendre une cercle unité avec un angle de pi/3 et dessine un triangle équilatéral.
    Il définit ainsi le cosinus par "cos (x) = OM1 puisque le rayon vaut 1". Et oui c'est vrai le rayon = 1 donc OM = 1.

    Mais personnellement je n'ai pas du tout vu ça ! Déjà j'ai vu un carré alors j'ai deviné que l’hypoténuse valait "1x Racinne de 2" et en utilisant le théorème de pythagore dans la triangle OPM on tombe sur : PM² + OP² = OM² <=> (1/2)² + (Racine 3/2)² = 1/4 + 3/4 = 2. Donc l'hypothénus vaut bien racine de 2.

    Ainsi le cos (x) vaut (Racine de 3/2) / (Racine de deux).

    Bon bien entendu je fais confiance à l'auteur et on voit bien que R=OM=1 y'a pas de souci j'aimerais juste savoir pourquoi j'ai tord ? ^^.

    IMG_2018[2].jpg

    -----


  2. Publicité
  3. #2
    gg0

    Re : [Trigonométrie] Triangle équilatéral !

    Bonjour.

    L'erreur est là : "1/4 + 3/4 = 2"

    Cordialement.

  4. #3
    PlaneteF

    Re : [Trigonométrie] Triangle équilatéral !

    Bonjour,

    Tu parles de , et d'un soi-disant carré, ... et aucun des 3 ne se trouvent sur la figure

    Cordialement
    Dernière modification par PlaneteF ; 24/04/2014 à 09h08.


  5. #4
    Cech

    Re : [Trigonométrie] Triangle équilatéral !

    Salut gg0.

    Ah mince j'avais pourtant vérifié mes calculs, veillez m'excuser et je vous remercie de m'avoir lu et répondu, bonne soirée !

  6. #5
    Cech

    Re : [Trigonométrie] Triangle équilatéral !

    Au passage pour ce que ça interresse on retrouve bien : " PM² + OP² = OM² <=> (1/2)² + (Racine 3/2)² = 1/4 + 3/4 = 1" Donc OM=R comme prévu tout va bien !

  7. A voir en vidéo sur Futura

Sur le même thème :

Discussions similaires

  1. Triangle équilatéral. Trigonométrie?
    Par wade75440 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 05/10/2011, 12h35
  2. Triangle équilatéral et complexes
    Par Penangol dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 28/10/2006, 21h13
  3. triangle équilatéral direct
    Par 1èreS:antho dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 06/05/2006, 20h42
  4. triangle équilatéral et trigonométrie
    Par kiara9 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 23/01/2006, 08h46
  5. Inertie triangle equilateral
    Par dureiken dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 16/05/2004, 14h32