Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Tétraèdre équifacial inscrit dans un... cube ?



  1. #1
    ClementDDD

    Tétraèdre équifacial inscrit dans un... cube ?

    Bonjour,

    Je donne des cours de math à un ami en Terminale S pour l'aider un petit peu et nous sommes confrontés à la question suivante :

    "Un tétraèdre équifacial est un tétraèdre dont les arrêtes opposées ont deux à deux la même longueur.
    Construire un cube et indiquer quatre de ses sommets qui forment un tétraèdre équifacial et non régulier"

    J'ai bien planché sur le sujet : je suis incapable de construire cet objet à partir de quatre sommets d'un cube. Soit les tétraèdre ne sont pas équifaciaux, soit ils sont réguliers. En revanche, dans un parallélépipède c'est assez simple d'obtenir un tel tétraèdre, mais dès lors que le parallélépipède est un cube, le tétraèdre devient systématiquement régulier.

    J'ai effectué quelques recherches sur Internet à propos des tétraèdres et je n'ai trouvé qu'exactement la même chose que ce que je vous raconte plus haut.

    N'y aurait-il pas une erreur dans l'énoncé ?

    Merci de m'éclairer

    -----


  2. Publicité
  3. #2
    ClementDDD

    Re : Tétraèdre équifacial inscrit dans un... cube ?

    Je me permets de remonter un peu le topic, n'étant toujours pas certain du fait exposé plus haut...

    Des idées ?

  4. #3
    PA5CAL

    Re : Tétraèdre équifacial inscrit dans un... cube ?

    Bonjour

    Je ne vois qu'un seul type de tétraèdre équifacial non régulier qu'on peut construire à partir des sommets d'un cube… et il est plat !

    Il se trouve "coincé" dans le plan perpendiculaire à une face et passant par sa diagonale.
    Dernière modification par PA5CAL ; 28/04/2015 à 15h32.

  5. #4
    ClementDDD

    Re : Tétraèdre équifacial inscrit dans un... cube ?

    Nous sommes donc d'accord à ce sujet... Il n'y en a pas (de non-plat évidemment).

    Je me permets de supposer qu'ils demandent un tétraèdre équifacial non plat car déjà c'est plus intéressant dans le cadre d'un exercice sur la géométrie dans l'espace, et de plus il faut en étudier un dans les questions qui suivent !

    Merci

  6. #5
    PA5CAL

    Re : Tétraèdre équifacial inscrit dans un... cube ?

    Si l'énoncé parle de tétraèdre équifacial non régulier, comme tu l'as deviné il faut certainement comprendre que l'erreur vient du "cube" qui devrait être un parallélépipède rectangle quelconque.
    Dernière modification par PA5CAL ; 28/04/2015 à 16h05.

  7. A voir en vidéo sur Futura

Sur le même thème :

Discussions similaires

  1. Comment calculer le volume d'un cube inscrit dans une sphère ?
    Par dlezin dans le forum Mathématiques du supérieur
    Réponses: 34
    Dernier message: 20/12/2014, 21h13
  2. dm de maths en seconde : tétraèdre équifacial
    Par morgane60 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 30/10/2011, 18h33
  3. Cercle inscrit dans un triangle équilateral ou casse tête inscrit dans un livre de math
    Par spamas dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 05/04/2011, 19h31
  4. Distance somment-centre d'un tétraèdre à partir du cube circonscrit.
    Par neokiller007 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 13/10/2008, 14h04
  5. Vecteurs dans un tétraèdre.
    Par Poussiquette89 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 12/11/2007, 00h58