Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

equation (x²-1)/(x²)




  1. #1
    Stakhanov21

    equation (x²-1)/(x²)

    Bonjour, je bloque à une équation pourtant de "base", c'est

    je n'arrive pas à la mettre sous la forme d'un polynôme pour ensuite utiliser delta, merci pour l'aide.

    -----


  2. Publicité
  3. #2
    Stakhanov21

    Re : equation (x²-1)/(x²)

    Bon j'ai trouvé en décomposant en [tex]\frac{x^2}{x^2} - \frac{1}{x^2}

    Je suppose que c'ets une formule d ebase mais vous confirmer que de manière générale (a+b)/c est égale à a/c + b/c ?

  4. #3
    BaptisteBaptiste

    Re : equation (x²-1)/(x²)

    Bonjour,

    Cela est pourtant évident: 0*x*x=x*x-1, donc x*x-1=0. Un produit en croix peut déjà t'aider.
    Dernière modification par BaptisteBaptiste ; 28/09/2017 à 17h26.


  5. #4
    andretou

    Re : equation (x²-1)/(x²)

    Citation Envoyé par Stakhanov21 Voir le message
    Bon j'ai trouvé en décomposant en [tex]\frac{x^2}{x^2} - \frac{1}{x^2}

    Je suppose que c'ets une formule d ebase mais vous confirmer que de manière générale (a+b)/c est égale à a/c + b/c ?
    Nous te confirmons avec plaisir que a/c + b/c = (a+b)/c
    Pour t'en convaincre il te suffit de mettre 1/c en facteur.

    Mais tu devrais plutôt utiliser le fait qu'une fraction est nulle si son numérateur est nul...
    Bon, le connaissable c'est fait... Qu'est-ce qu'il nous reste maintenant à découvrir ?

  6. #5
    danyvio

    Re : equation (x²-1)/(x²)

    Attention : la fonction n'est pas définie pour x=0, donc dans le domaine de définition, x2 ne peut être que strictement positif, il reste à résoudre x2-1 = 0 (toujours dans le domaine de définition)
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  7. A voir en vidéo sur Futura
  8. #6
    ansset

    Re : equation (x²-1)/(x²)

    edit: inutile, mal lu le post précédent.
    Dernière modification par ansset ; 28/09/2017 à 18h06.
    y'a quelque chose qui cloche là dedans, j'y retourne immédiatement !

Sur le même thème :

Discussions similaires

  1. Questions équation de Navier-Stokes et équation d'Euler
    Par Kafkana1 dans le forum Physique
    Réponses: 1
    Dernier message: 19/04/2017, 16h48
  2. Réponses: 6
    Dernier message: 17/10/2016, 12h06
  3. Réponses: 4
    Dernier message: 14/04/2016, 12h55
  4. Equation de la symétrie d'un polynome par rapport à une droite d'equation ax+b
    Par kywalh dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 26/03/2009, 08h54
  5. Précision sur une recherche de solution unique équation d'une équation différentielle
    Par indilunique dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 11/01/2009, 16h02