Bonsoir,
j'ai quelques petits problèmes avec les primitives.
Quelqu'un saurait comment on fait pour calculer les primitives de type (u^alpha)?
Merci à vous.
-----
Bonsoir,
j'ai quelques petits problèmes avec les primitives.
Quelqu'un saurait comment on fait pour calculer les primitives de type (u^alpha)?
Merci à vous.
Par exemple pour (2x+1)^3 on trouve F(x) = 1/8 x (2x+1)^4
Quelqu'un pourrait m'expliquer comment on trouve ça s'il vous plaît ?
Merci.
Bonjour,
Sauf cas particuliers, on ne sait pas...
Il faudrait arriver à faire apparaître un u' au numérateur pour pouvoir résoudre.
Si on sait exprimer u' comme fonction de u u'=f(u), on se retrouve ensuite (après changement de variable ) à chercher la primitive de la fonction de x x^alpha/f(x).
Rien ne prouve que cela sera faisable. Par exemple, on ne sait pas intégrer racine(ln(x))
Why, sometimes I've believed as many as six impossible things before breakfast
Oui mais le prof a écrit la chose suivante :
F(x) = 1/4 x (2x+1)^4 + k = 4 x 1/4 x (2x+1)^3 x 2
et il en a déduit que la primitive est F(x) = 1/8 x (2x+1)^4 + k
Vous comprenez ce qu'il a essayé de faire?
Rebonjour,
Votre problème, lui, est très simple : la primitive d'une fonction de type (a*x+b)^alpha est tout simplement 1/a/(alpha+1)*(ax+b)^(alpha+1)+ Cste
Ce qu'on peut vérifier aisément par identification, en dérivant la primitive
Dernière modification par Resartus ; 20/11/2017 à 23h03.
Why, sometimes I've believed as many as six impossible things before breakfast
Okay je vous remercie.
Est ce que vous sauriez quelle est la primitive de cos²(x) et de sin²(x) également svp ?
Merci à vous.
Vous n'auriez pas un bon site qui donne les formules de toutes les primitives svp ?
Merci à vous.
Bonjour.
On obtient des primitives de sin²(x) et cos²(x) à partir de la formule de cos(2x). je te laisse trouver comment ...
Sur Internet, tu as de nombreux tableaux de primitives élémentaires et de formules de primitivation (*).
Cordialement.
(*) en fait ce sont des formules de dérivation réécrites pour être plus pratiques, comme celle sur U'U^n.
Okay je vous remercie et pour l'exponentielle ?
Parce que pour e(x²) je sais pas trop comment on pourrait calculer la primitive ...
Merci à vous.
Dans l'exercice ils nous demandent de calculer la primitive de (x^3)exp(x²)
Et là je bloque .
Quelqu'un pourrait m'aider svp?
Regarde la dérivée de exp(x²), ça te donnera une idée.
Tu fais quelle formation ? As-tu vu des techniques d'intégration ?
Sinon, quelques remarque :
* "la primitive de (x^3)exp(x²)" ne veut rien dire, si tu ne dis pas laquelle (parmi l'infinité des primitives de (x^3)exp(x²))
* Pour e(x²), tu ne risques pas de calculer une primitive (si tu en as une, tu en déduis toutes les autres), on prouve qu'il n'y a pas de calcul élémentaire qui donne une primitive de x--> e(x²). Comme pour la plupart des fonctions ...
Cordialement.
Une intégration par partie?
On pose u(x)=x² et v(x) = x exp(x²)
u est facile à dériver et v facile a intégrer (c'est la dérivée d'une fonction composée). On obtiens alors ne fonction facile à intégrer
Bonsoir,
je suis en licence en Faculté de Sciences.
On a vu brièvement l'intégration par parties mais ce serait possible que vous réexpliquiez comment on l'utilise svp?
merci.
c'est basé sur la dérivée d'un produit : (u.v)' = u'.v + u.v'
donc tu peux remplacer un calcul de primitive d'une expression où tu identifies un produit (u'.v) par
un calcul de primitive de : (u.v)' - (u.v'). Donc une primitive d'une dérivée (c'est tout cuit) moins une primitive de u.v'
Bref l'intégration par parties est utile partout où calculer une primitive de u'.v est simplifié en la remplacant par un calcul d'une primitive de u.v'.
There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.
Vu tes questions et le choix du forum, je te croyais en BTS 1.
Tu as donc un an de retard sur la question, fréquenter un cours (bouquin, pdf, ..) sur l'intégration de L1 (*) est urgent pour toi. Tu y apprendrais les notions dans l'ordre et sans "trous", contrairement à ce qui va se passer si tu te contentes de poser des questions et de résoudre quelques exercices. Mon conseil : va à la BU, regarde les ouvrages, et choisis le ou les bouquins qui te plaisent.
Pour l'intégration par parties : Une fois qu'on a repéré que la fonction à intégrer s'écrit sous la forme d'un produit, qu'un terme est facile à intégrer parce que c'est en fait une dérivée (voir notion de primitive) et l'autre aura une dérivée qui ne compliquera pas trop, on applique la formule.
Cordialement.
(*) plutôt qu'un livre de terminale, moins complet.
Okay je vous remercie pour ces conseils.