théorème de Césaro, convergence de suite
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

théorème de Césaro, convergence de suite



  1. #1
    invite0f0e1321

    théorème de Césaro, convergence de suite


    ------

    Bonjour, j'ai un problème avec l'exercice suivant:
    Soient u et v deux suites convergentes vers 0. On pose Montrer en s'inspirant de la méthode de démonstration du théorème de Césaro que la suite w converge vers 0.
    Pour la méthode de démo du théorème de Césaro, voir ici:
    http://fr.wikipedia.org/wiki/Th%C3%A..._%28analyse%29
    Voilà où j'en suis:
    Soit e>0 il existe n0 et n1 tel que pour n>n0, respectivement n>n1, |un|<e, respectivement |vn|<e
    En appliquant l'inégalité triangulaire, j'ai:

    je pose n2=max(n0,n1) mais je ne vois pas où couper ma somme comme dans la démo du théorème de Césaro car si je coupe en n2, ça ne me donne pas grand chose...
    C'est donc là que je bloque
    Merci d'avance pour votre aide

    -----

  2. #2
    invite2eaa2470

    Re : théorème de Césaro, convergence de suite

    Il faut "adapter" la méthode appliquée à Césaro. Essaye en posant n2=n0+n1 en coupant "astucieusement" ta somme.

Discussions similaires

  1. Limite et theoreme de convergence monotone
    Par invite5c6c2cbf dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 19/11/2007, 13h14
  2. Trouver un equivalent d'une suite avec cesaro ?
    Par invite42abb461 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 13/11/2006, 16h54
  3. théorème de convergence
    Par invite10722f67 dans le forum Mathématiques du supérieur
    Réponses: 24
    Dernier message: 15/10/2006, 20h13
  4. Suite et Césaro
    Par inviteeac53e14 dans le forum Mathématiques du supérieur
    Réponses: 35
    Dernier message: 15/02/2006, 11h52