Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

endomorphisme nilpotent (math spé)



  1. #1
    Bastien

    endomorphisme nilpotent (math spé)

    Bonjour à tous, j'ai vraiment un soucis avec un petit exo mais costaud. Merci pour votre aide précieuse.
    Soit u un endomorphisme d'un K-ev E. On dit que u est nilpotent ssi il existe n appartenant à N tq u^n = 0E. Montrer que si u est nilpotent, alors Id-u est bijectif.

    -----


  2. Publicité
  3. #2
    µµtt

    Re : endomorphisme nilpotent (math spé)

    C'est toi qui poste un peu partout ?

    cf http://www.maths-forum.com/forum/for...01&pg=end#last

  4. #3
    Coincoin

    Re : endomorphisme nilpotent (math spé)

    Salut,
    un=0E, donc Id+un=Id (pour l'instant, rien de compliqué).
    Or Id+un=(Id-u)o(Id+u+u²+...+un-1) (car Id et u commutent) (si t'es pas convaincu, développe et tu verras bien...).
    Bref si j'appelle v=Id+u+u²+...+un-1, alors j'ai (Id-u)ov=Id. J'ai donc trouvé l'inverse de Id-u, qui est donc forcément bijectif...

    Voilà, voilà
    Encore une victoire de Canard !

  5. #4
    Geof

    Re : endomorphisme nilpotent (math spé)

    D'accord, Coincoin (je n'ai pas vérifié en détail, mais je pense qu'on peut effectivement écrire sous cette forme), mais par analogie avec les réels, je dirais que c'est Id-un qui vérifie l'expression.

    Voilà, juste pour mettre mon grain de sel

    Geoffrey

  6. #5
    Coincoin

    Re : endomorphisme nilpotent (math spé)

    Id-un
    Exact...
    L'analogie avec les réels marche car Id et u commutent ce qui permet de simplifier pas mal de termes.
    Encore une victoire de Canard !

  7. A voir en vidéo sur Futura

Sur le même thème :

Discussions similaires

  1. Dm TS spé math : 2^3n - 1 = 7k
    Par Stevou dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 06/11/2009, 15h45
  2. hésitation entre spé math et spé physique ...
    Par darknesshot dans le forum Orientation avant le BAC
    Réponses: 14
    Dernier message: 04/04/2009, 17h58
  3. spe math
    Par bastien8312 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 15/11/2006, 16h01
  4. endomorphisme nilpotent
    Par mela dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 27/03/2005, 10h30
  5. endomorphisme nilpotent
    Par jameso dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 05/09/2004, 15h38