endomorphisme nilpotent
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

endomorphisme nilpotent



  1. #1
    invite87191796

    Post endomorphisme nilpotent


    ------

    Hello tout le monde,
    je suis en seconde année de MIAS à la fac;et pour fêter ça, ils ont décidé de nous faire passer un oral de maths.
    Donc j'ai un petit sujet, pas très compliqué mais disons que je sèche sur quelques questions, et j'aimerais bien faire quelque chose de bien.
    Donc je vous donne mon sujet et les réponses que j'ai trouvées...

    N€L(R^n) nilpotent ( il existe k tel que N^k=0) (j'ai mis le signe € pour appartient)

    1) Montrer que la seule valeur propre possible est 0.
    2) Montrer que 0 est valeur propre.
    3) Montrer que Pcar=X^n (polynôme caractéristique)
    4) Montrer qu’il existe k(N) tel que,
    pour tout k≥k(N), N^k=0
    pour tout k<k(N), N^k≠0
    5) Montrer que Pmin=X^k(N) (polynôme minimal)
    6) En déduire que k(N)≤n
    7) Ei = Ker fi
    Montrer que Ei C Ei+1 pour tout i
    Montrer que Ei = Ei+1 <=> i≥k(N)
    8) Supposons k(N) = n
    Montrer que dim Ei =i pour tout i≤n
    9) Donner des exemples d’endomorphismes nilpotents avec k(N)=i pour toutes les valeurs de i=1..n

    Alors voilà mes solutions, par contre je ne sais pas si c'est très rigoureux:
    1 et 2, facile,
    3) le polynôme caractéristique c'est bien le déterminant de (XId - A) A étant la matrice de l'endomorphisme nilpotent, semblable à une matrice triangulaire supérieure avec des 0 sur la diagonale, il me semble. Donc produit des termes diagonaux donne Pcar = X^n
    4)?
    5)?
    6) on sait que le poly minimal divise le poly caractéristique donc X^k(N) < n
    7) pour i ≤ k(N) N^i=0 donc Ei=R^n, et N^i+1=0 donc Ei+1=R^n donc Ei=Ei+1
    pour i quelconque je pensais le faire par récurrence mais je sais pas par quel bout le prendre...
    8)d'après le théorème du rang: dim R^n=dim ker N^i + dim im N^i
    donc n=Ei+ rang N^i, or je dois trouver Ei=n..bug!!
    9)pas trouvé..

    Voilà, je suis à peu près certaine que j'ai écrit des trucs faux mais bon.....
    Merci d'avance à ceux qui auront l'amabilité de m'aider....je vous remercie bien!!
    A bientôt
    Mélanie

    -----

  2. #2
    invitec314d025

    Re : endomorphisme nilpotent

    pour la 4)



    non ?

  3. #3
    invite87191796

    Re : endomorphisme nilpotent

    Je pense oui, mais je n'arrive pas à cerner l'interêt de la question, car pour moi, c'est la définition même d'un endomorphisme nilpotent...

    Mélanie

  4. #4
    invite4793db90

    Re : endomorphisme nilpotent

    Salut,

    c'est une question bêbête, il faut juste faire attention à la définition de k(N): c'est le plus petit entier tel que Nk(N) soit nul. Ainsi si n<k(N), par définition Nn est non nul et si n>=k(N), par récurrence triviale[1], Nn=0.

    Cordialement.

    [1] ou en écrivant que Nn=Nk(N)Nn-k(N).

  5. A voir en vidéo sur Futura

Discussions similaires

  1. Nilpotent et matrice de Jordan
    Par invite51a3f1d4 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 17/11/2007, 19h17
  2. Groupe nilpotent
    Par inviteab2b41c6 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 22/02/2005, 13h30
  3. endomorphisme nilpotent (math spé)
    Par invitec1e39d91 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 24/09/2004, 13h12
  4. vous avez dit nilpotent?
    Par invite3d9f8ee1 dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 18/09/2004, 12h43
  5. endomorphisme nilpotent
    Par invitefa636c3d dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 05/09/2004, 16h38