Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

Équation différentielle



  1. #1
    baps

    Équation différentielle


    ------

    bonjour
    je suis bloqué sur la résolution de l'équation différentielle suivante :

    m(dv/dt)+av²=a(l)²

    v représente la vitesse et je n'arrive pas à résoudre à cause du ² sur la vitesse
    est ce que quelqu'un pourrait m'aider
    merci d'avance

    -----

  2. Publicité
  3. #2
    SPH

    Re : equa diff

    je vais essayer mais je ne te promet rien :

    m(dv/dt)+av²=a(l)²
    m(dv/dt)=a(l)²-av²
    m(dv/dt)=(a(l)-av)²
    (a(l)-av)²=m(dv/dt)
    a(l)-av=Racine(m(dv/dt))
    a(l-v)=Racine(m(dv/dt))
    a=Racine(m(dv/dt))/(l-v)

    Voilaaaa (c'est probablement faux mais j'ai essayé)

  4. #3
    Gwyddon

    Re : Équation différentielle

    Bonjour,

    Que représente a ? Un coefficient, une fonction, si c'est une fonction une fonction de quelle(s) variable(s) ?

    Bref pourrais-tu rendre l'énoncé plus clair ?
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  5. #4
    baps

    Re : Équation différentielle

    a est un coefficient tout comme l et m
    en cherchant la solution sur mapple, j'ai trouvé la téponse suivante :
    v(t) = (arctan(t*(m*g*a)^(1/2)/m)*(m*g*a)^(1/2))/a
    et cette réponse semble correspondre aux données de l'exercice
    cependant je ne vois pas du tout comment démontrer cette réponse

  6. A voir en vidéo sur Futura
  7. #5
    Gwyddon

    Re : Équation différentielle

    As-tu essayé la méthode de séparation des variables ?

    EDIT : d'où sort le g dans la solution que tu as donnée ?
    Dernière modification par Gwyddon ; 04/01/2008 à 11h31.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  8. #6
    Gwyddon

    Re : Équation différentielle

    En fait la solution que tu donnes n'a rien à voir avec le problème initial, tu as dû te tromper en rentrant les données
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  9. Publicité
  10. #7
    baps

    Re : Équation différentielle

    oups je suis désolé l'équation différentielle est en réalité
    m*(dv/dt)+a*v(t)^2 = m*g
    mais en fait on démontre auparavant, en prenant une solution qui serait constante(proposé par l'ennoncé) que m*g = a*l²
    la solution que j'ai donné est donc celle déquation ci dessus

  11. #8
    baps

    Re : Équation différentielle

    sinon je ne vois pas comment tu pourrais utiliser une méthode de séparation des variables étant donné qu'il n'y en a qu'une seule : la vitesse.

    en tout cas merci pour ton aide

  12. #9
    Gwyddon

    Re : Équation différentielle

    la solution que j'ai donné est donc celle déquation ci dessus
    Non, v(t) est une tangente normalement.

    Sinon la séparation des variables marche très bien, tu as deux variables : v et t
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  13. #10
    baps

    Re : Équation différentielle

    est ce que tu pourrais me montrer comment commencer car je n'en ai pas la moindre idée merci

  14. #11
    God's Breath

    Re : Équation différentielle

    Partant de , il vient puis .
    et il suffit d'intégrer les deux membres, mais on n'obtiendra pas une formule avec des arctangentes...

Discussions similaires

  1. Equation différentielle
    Par riadhtr dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 27/10/2008, 21h28
  2. Equation differentielle
    Par Xanagol dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 09/03/2006, 20h15
  3. Equation differentielle ??
    Par benji. dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 21/01/2006, 21h04
  4. equation differentielle
    Par BillyNut's dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 08/01/2006, 10h49
  5. équation différentielle
    Par khroms dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 04/01/2006, 11h17