V.a. définie par récurrence
Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

V.a. définie par récurrence



  1. #1
    Bleyblue

    V.a. définie par récurrence


    ------

    Bonjour,

    J'ai une suite Xn de variables aléatoires indépendantes identiquement distribuées, d'esperance u et de variance s et j'ai la suite de v.a. définie par :

    Y1 = X1/2

    Yn = (Yn - 1 + Xn)/2 pour n > 1

    Je cherche dans un premier temps l'espérance la variance et la fonction caractéristique de Yn

    Alors, moi je montre (par induction) qu'en fait :



    Ce qui me permet de trouver l'espérance de Yn :



    De même pour la variance j'ai (j'utilise le fait que Var(aX) = a²Var(X) et que les Xi sont iid ce qui fait que Var(somme) = Somme(var))


    (je peux détailler si quelqu'un veut mais ce n'est que du calcul)

    Pour la fonction caractéristique j'ai de plus :


    = (par indépendance des Xi)

    =

    Ou phi désigne la fonction caractéristique des Xi

    Ca marche tout ça vous pensez ? En particulier le dernier point ? Ce n'est pas fort joli comme expression ...

    merci !

    -----

  2. #2
    Bleyblue

    Re : V.a. définie par récurrence

    Moi je dis que c'est bon, ça en a l'air

    Si les Xi sont distribués selons une normale (u,s²) alors j'ai de plus :



    (vu que la fonction caractéristique d'une normale (u,s²) c'est )
    C'est à dire :



    Après mise en évidence et factorisation des sommes de 2^x ça donne donc :



    Donc, par le théorème de Levy, Yn est de loi normale ()

    Et la fonction caractéristique de Yn tend vers celle d'une loi normale (u,s²) lorsque n tend vers l'infini donc par le théorème de Levy à nouveau Yn converge en loi vers une normale (u,s²)

    Si quelqu'un peut confirmer l'exactitude de tout ça ...

    merci

  3. #3
    Bleyblue

    Re : V.a. définie par récurrence

    Attention j'ai commis une erreur de calcul pour la partie b), j'ai oublié d'élever les dénominateurs 2^i au carré en injectant dans la fonction caractéritique.

    Ce n'est pas bien grave car ça ne change pas le résultat final

Discussions similaires

  1. Suite définie par récurrence
    Par inviteea5db5e2 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 10/10/2007, 20h29
  2. Etude d'une suite définie par récurrence pour u0 décrivant R
    Par invitec9d491c3 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 09/10/2007, 19h11
  3. Somme des termes d'une suite définie par récurrence
    Par invite0b6e39d7 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 28/09/2006, 23h54
  4. Somme des termes d'une suite définie par récurrence
    Par invite0b6e39d7 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 28/09/2006, 21h53
  5. suite d'entier definie par recurrence
    Par invite55c88d9c dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 17/02/2005, 15h06