intégrale
Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

intégrale



  1. #1
    invitee0d36548

    intégrale


    ------

    Bonjour à tous
    Voila l'exercice :
    Soit f continue sur IR et g(x) = f(x)

    -----

  2. #2
    invite9c9b9968

    Re : intégrale

    Bonjour

    On est sensé te fabriquer l'exercice ?

  3. #3
    invitee0d36548

    Re : intégrale

    Je me suis planter :s dsl

    ALors l'exo c'est : Soient f continue sur IR et g une fonction définie par g(x) = f(x) F 0 à x f(t) dt sur IR aussi .

    F 0 à x signifie Intégrale de 0 à x

    Il faut montrer que si g est décroissante sur IR, f = 0


    Comment faire?

    Merci de vos aides

  4. #4
    invite57a1e779

    Re : intégrale

    Idée spontanée : je pose , alors , est de classe sur avec [tex]F' = f.
    Dire que est décroissante, c'est donc dire que est concave.
    Du fait que c'est un carré, est positive.
    Comme , il s'agit d'un minimum de .

    Ainsi, est une fonction concave qui atteint son minimum en 0, il faut en déduire qu'elle est nulle, d'où puis [f = F' = 0[/tex].

    Le point que je laisse en suspens est "évident" sur un dessin, reste à le démontrer proprement, en utilisant habilement le théorème des accroissements finis par exemple.

  5. A voir en vidéo sur Futura
  6. #5
    invite71b1f7de

    Re : intégrale

    Salut

    Selon moi , si tu supposes que g est decroissante sur R , ayant g(0)=f(0) * 0 = 0 , tu as g > 0 sur [-infini ; 0 ] , et g<0 sur [ 0 ; + infini ] .

    Or g(x) = ......( ta definition )

    Placons nous sur x>=0 par ex :

    g < =0 => f <=0 et F 0 à x f(t) dt > =0 (1 )

    ou f >=0 et F 0 à x f(t) dt < = 0 ( 2 )

    Prenons le cas (1) :

    f<=0 => F 0 à x f(t) dt <= 0 car f continue sur R et x > =0

    => soit F 0 à x f(t) dt = 0 pour tout x de R+

    D'ou f = 0 sur R+


    Exactement pareil sur R- ....

    Bon courage

  7. #6
    invite57a1e779

    Re : intégrale

    akabus47

    Ton raisonnement ne fontionne pas, parce que tu supposes f de signe constant entre 0 et x.

    Tu n'as absolument pas le droit de dire
    cas 1 : si f positive, ...
    cas 2 : si f négative...

    Si f est une cochonceté du genre , tu es dans le
    cas 3 : si f change de signe...

    Par contre ta remarque sur le signe de g, et le minimum que j'indique pour permettent de conclure.

Discussions similaires

  1. expression d'une intégrale en termes d'une intégrale elliptique
    Par invite93279690 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/09/2007, 20h00
  2. intégrale
    Par invitef2d8cce9 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 26/03/2007, 17h53
  3. Intégrale
    Par invite56f88dc9 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 19/02/2007, 19h42
  4. intégrale mathématique vs intégrale physique
    Par invitec3f4db3a dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 17/04/2006, 20h35
  5. intégrale
    Par invite56f88dc9 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 03/04/2006, 20h18