Image d'un endomorphisme
Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Image d'un endomorphisme



  1. #1
    invite3c7cf36a

    Image d'un endomorphisme


    ------

    Bonjour,

    Ma question est très bête mais je n'arrive plus du tout à me souvenir de la manière dont on résout ce genre de problème.

    Alors voilà j'ai E un espace vectoriel de R dont une base est B=(e1,e2,e3,e4).u est l'endomorphisme de E tel que la matrice de u par rapport à cette base soit:

    [img=http://img186.imageshack.us/img186/5748/62857215yf6.th.jpg][img=http://img186.imageshack.us/images/thpix.gif]

    Je dois trouver Im(u) en fonction des vecteurs de la base B et je ne sais plus du tout la méthode si quelqu'un peut me rafraîchir la mémoire merci d'avance.

    -----

  2. #2
    invite3c7cf36a

    Re : Image d'un endomorphisme

    Personne??

  3. #3
    invite3c7cf36a

    Re : Image d'un endomorphisme

    Je ne trouve pas la fonction éditer désolé

    J'ai essayé de me rappeler comment il fallait faire et je suis arrivé à cela:



    On voit bien que j'ai du faire une erreur quelque part car j'obtiens un vecteur identique dans Ker u et dans Im u. Pourriez vous m'indiquer mon erreur svp?

  4. #4
    invitebfd92313

    Re : Image d'un endomorphisme

    pour l'image, ton résultat est bon meme si je ne comprends pas bien ta méthode avec les opérations élémentaires. (a moins que le but n'était de connaitre le rang ?)

    pour le noyau, ta méthode est bonne, je n'ai pas vérifié le calcul mais il n'est pas impossible d'obtenir un vecteur qui soit dans l'image et le noyau.

  5. A voir en vidéo sur Futura
  6. #5
    invite7ffe9b6a

    Re : Image d'un endomorphisme

    Citation Envoyé par Jeanbonette Voir le message
    Je ne trouve pas la fonction éditer désolé

    J'ai essayé de me rappeler comment il fallait faire et je suis arrivé à cela:



    On voit bien que j'ai du faire une erreur quelque part car j'obtiens un vecteur identique dans Ker u et dans Im u. Pourriez vous m'indiquer mon erreur svp?
    En quoi avoir un vecteur identique dans Ker u et Im u est-il obligatoirement une erreur?

    Un endomorphisme u peut tres bien envoyer un vecteur dans le noyau. Autrement on peut tres bien avoir:



    Ou encore si on pose

    On a ker(M)=Im(M)


    Il n'ya pas d'erreur dans tes résultats

  7. #6
    invite3c7cf36a

    Re : Image d'un endomorphisme

    Merci pour cette réponse.

    J'ai un autre problème sur une histoire de surjectivité. J'ai

    Soit K[X] l'espace vectoriel des polynômes à coefficients dans le corps K et d l'endomorphisme de K[X] qui a un polynôme P associe son polynôme dérivé P'.

    On me demande si d est injectif et s'il est surjectif.

    L'injection est facile à infirmer en prenant un contre exemple en effet si P'=Q' P n'est pas forcément égale à Q à cause de la constante des polynômes.Mais pour la surjectivité je ne vois pas comment faire.Pourriez vous m'indiquer une piste s'il vous plait?

    Merci d'avance

Discussions similaires

  1. Matrice d'un endomorphisme
    Par invitea48bae98 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 06/08/2015, 16h07
  2. matrice d'un endomorphisme
    Par inviteb9bcf6ad dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 09/03/2008, 21h52
  3. etude d'un endomorphisme
    Par invite37c192d1 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 26/04/2007, 20h56
  4. réduction d'un endomorphisme
    Par invite9ab97b7e dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 02/04/2007, 23h49