Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Trouver une matrice inversible



  1. #1
    Elek

    Trouver une matrice inversible


    ------

    Bonjour à tous!

    Voilà, je bloque à un exo.. :

    J'ai démontré auparavant que la matrice A=(11,-4,-8 ; 8,-1,-8 ; 8,-4,-5) est diagonalisable et j'ai ses valeurs propres.

    Maintenant je doit trouver G une matrice inversible telle que A=GBG-1

    avec B=(c,0,0 ; 0,d,1 ; 0,0,d)

    où {c,d} un couple de R² qui doit être précisé

    J'ai remarqué que B est triangulaire supérieure et donc A est trigonalisable car elle est semblable à une matrice triangulaire (d'après A=GBG-1). Ceci est logique car A est diagonalisable et donc elle est automatiquement trigonalisable. Cependant, tout ce que je sais sur les matrices trigonalisable c'est que leur polynôme caractéristique est scindé. (J'ai l'impression de tourner en rond.. )

    Faut-il utiliser le fait que A soit diagonalisable et utiliser ses valeurs propres?

    Quelqu'un peut m'aider s'il vous plait?

    Merci d'avance!

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    God's Breath

    Re : Trouver une matrice inversible

    Remarque : si A est diagonalisable, elle ne peut pas être semblable à B qui n'est pas diagonalisable.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  5. #3
    invite986312212
    Invité

    Re : Trouver une matrice inversible

    oui pour déterminer b et c il faut utiliser le fait que A et B ont mêmes valeurs propres (3,3,-1).

  6. #4
    regok

    Re : Trouver une matrice inversible

    Tu peux aussi utiliser l'invariance ( / bases) du determinant et de la trace :
    1) A=GBG-1 => Tr(A) = Tr(GBG-1) = Tr(B)

    2) A=GBG-1 => Det(A) = Det(GBG-1) = Det(B)

    3) connaissant (c,d) resoudre ensuite A=GBG-1 => AG = GB (avec G pour inconnu)

  7. A voir en vidéo sur Futura
  8. #5
    God's Breath

    Re : Trouver une matrice inversible

    Citation Envoyé par regok Voir le message
    Tu peux aussi utiliser l'invariance ( / bases) du determinant et de la trace :
    1) A=GBG-1 => Tr(A) = Tr(GBG-1) = Tr(B)

    2) A=GBG-1 => Det(A) = Det(GBG-1) = Det(B)

    3) connaissant (c,d) resoudre ensuite A=GBG-1 => AG = GB (avec G pour inconnu)
    Cela paraît lourd, on a un changement de base avec la matrice de passage . Si on l'interprète correctement, on voit vite que les colonnes de sont telles que :
    est vecteur propre pour la valeur propre simple ;
    est vecteur propre pour la valeur propre double ;
    .
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

Discussions similaires

  1. Pourquoi matrice jacobienne coordonnée polaire non inversible en 0
    Par Thos dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 20/05/2008, 13h31
  2. matrice inversible associée à un endormorphisme
    Par YABON dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 11/05/2008, 20h57
  3. Matrice inversible
    Par minemine dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 04/05/2008, 14h34
  4. Montrer que la matrice nulle est pseudo-inversible
    Par ref92 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 01/05/2007, 23h14
  5. Trouver une matrice qui annule une autre
    Par nams2590 dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 30/03/2007, 21h41