Répondre à la discussion
Affichage des résultats 1 à 16 sur 16

Fonction integrable.



  1. #1
    Le lyceen59155

    Fonction integrable.


    ------

    Bonjour ,

    Hier , j'ai été pris d'un doute , est ce qu'une fonction integrable sur [a;+inf[ admet une limite finie en +inf ?

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    Antho07

    Re : Fonction integrable.

    On entend il me semble par "f est integrable sur [a;+inf["


  5. #3
    Le lyceen59155

    Re : Fonction integrable.

    Et donc ? Elle admet une limite finie ?

    En fait je m'etais jamais posé le probleme graphiquement.

  6. #4
    sadben2004

    Re : Fonction integrable.

    Ça dépend si tu impose la continuité ou pas .

    exemple : f = 1/x^2 est intégrable sur [1 +inf]

    tu prend g(n) = 1 pour les entiers et g(x) = f(x) sinon

    g est intégrable , mais lim(g(x)) n'est pas défini
    Science sans consience n'est que ruine de l'âme

  7. A voir en vidéo sur Futura
  8. #5
    Antho07

    Re : Fonction integrable.

    J'avais mal lu ta question, le fait que la fonction prenne en quelques valeurs discretes + l'infini ne change pas sont integrales (de lebesgue)

  9. #6
    sadben2004

    Re : Fonction integrable.

    Salut Antho07,
    la definition de l'integrabilité est que int(|f|) soit fini, comme t'as ecrit en haut.
    sin(x) n'est pas integrable.
    Science sans consience n'est que ruine de l'âme

  10. Publicité
  11. #7
    Le lyceen59155

    Re : Fonction integrable.

    Citation Envoyé par sadben2004 Voir le message
    Ça dépend si tu impose la continuité ou pas .

    exemple : f = 1/x^2 est intégrable sur [1 +inf]

    tu prend g(n) = 1 pour les entiers et g(x) = f(x) sinon

    g est intégrable , mais lim(g(x)) n'est pas défini
    Oui on impose une continuité . Sinon en effet on peut trouver des cpm faisant l'affaire .
    Ce que je n'arrive pas à comprendre c'est comment des fonctions tel lnx ou d'autre peuvent etre integrable sur par exemple ]0;1] , alors que graphiquement , on voit tres bien que l'aire tend vers l'infini .

  12. #8
    Antho07

    Re : Fonction integrable.

    Citation Envoyé par sadben2004 Voir le message
    Salut Antho07,
    la definition de l'integrabilité est que int(|f|) soit fini, comme t'as ecrit en haut.
    sin(x) n'est pas integrable.
    salut, oui j'ai supprimé ce message m'en étant rendu compte juste apres l'avoir posté, merci de la confirmation

  13. #9
    sadben2004

    Re : Fonction integrable.

    Ce que je n'arrive pas à comprendre c'est comment des fonctions tel lnx ou d'autre peuvent etre integrable sur par exemple ]0;1] , alors que graphiquement , on voit tres bien que l'aire tend vers l'infini .
    Justement l'air ne tend pas vers +inf ! (c'est le périmètre qui est infini)
    Regarde et au voisignage de zero
    La premiere est integrable, la 2eme non.
    Graphiquement cela veut dire que pour l'aire entre l'axe des y et la courbe est fini, alors que pour le 2eme cas, cet air est infini.
    C'est pour la meme raison que est intégrable en +inf alors que ne l'est pas (en symétrisant par rapport à y=x)
    Science sans consience n'est que ruine de l'âme

  14. #10
    Thorin

    Re : Fonction integrable.

    Citation Envoyé par Le lyceen59155 Voir le message
    Oui on impose une continuité . Sinon en effet on peut trouver des cpm faisant l'affaire .
    Ce que je n'arrive pas à comprendre c'est comment des fonctions tel lnx ou d'autre peuvent etre integrable sur par exemple ]0;1] , alors que graphiquement , on voit tres bien que l'aire tend vers l'infini .
    Pour le logarithme, on peut "montrer" graphiquement (moyennant une approximation) que l'aire Est finie, de manière assez simple.
    En fait, ça tient essentiellement au fait que la somme des inverses des puissances de 2 tend vers une limite finie
    (1+1/2+1/4+1/8+1/16+1/32+1/64+...).
    Décomposons l'aire dont on cherche la valeur en sortes de petits trapèzes, dont les côtés parallèles sont les côtés horizontaux. Un des côtés "verticaux" sera un bout de l'axe des ordonnées, et l'autre, pas vraiment vertical, sera un bout de la courbe du logarithme (qu'on peut approximer à une droite, quand on descend assez bas).
    Histoire de fixer les idées, disons qu'on s'arrange pour que la hauteur du trapèze soit de 1. (donc le segment de l'axe des ordonnées qui sert de côté vertical est de longueur 1).

    on prend un de ces petits trapèzes au pif, de préférence assez bas, pour que la courbe du logarithme soit localement approximable à une droite.
    j'appelle x la longueur du grand côté du trapèze parallèle à l'axe des abscisses. (celui qui est le plus en haut des deux, quoi).

    Alors, on obtient facilement que la longueur du côté du trapèze qui lui est parallèle est de longueur x/e.
    a partir de là, on applique la formule de l'aire d'un trapèze, et on obtient donc que l'aire de celui ci est (x+(x/e))/2. J'appelle A cette aire.

    Maintenant, on calcule l'aire du trapèze qui est juste au dessous de celui ci. La longueur qui était x sur l'autre trapèze devient alors x/e, et celle qui était x/e sur l'autre est ici x/e².
    L'aire de ce trapèze est ((x/e)+(x/e²))/2, j'appelle B cette aire.

    On remarque que A=e*B
    si on prend maintenant le trapèze qui est encore en dessous de celui ci, dont j'appelle C l'aire, on remarque que A=e²*C.

    Alors, si on additionne maintenant toutes les aires de tous ces petits trapèzes, on a A+B+C+D+...=A+ A/e + A/e² + A/(e^3) + ... = A*(1+ 1/e + 1/e² + 1/e^3 + ...)

    Or, comme e>2, on a 1/e < 1/2, et par suite :
    (1+ 1/e + 1/e² + 1/e^3 + ...) < (1 + 1/2 + 1/4 + 1/8 + ...)
    Or (1 + 1/2 + 1/4 + 1/8 + ...) est fini, car la somme des inverses des puissances de 2 converge.
    Donc, la somme des aires des petits trapèzes converge aussi !

    Autrement dit, l'aire sous la courbe du logarithme, quand on approche de 0, converge aussi !
    École d'ingénieurs + M1 Physique Fondamentale

  15. #11
    Thorin

    Re : Fonction integrable.

    http://img395.imageshack.us/my.php?image=trapkd0.jpg
    ( lien direct : http://img395.imageshack.us/img395/7178/trapkd0.jpg )

    Et voilà une image pour illustrer ce dont je parle.

    Le premier trapèze dont je parle est en rouge, le deuxième est en jaune.



    Ce que je voulais montrer avec ce raisonnement est que pour le logarithme du moins, tu peux ramener ton problème d'aire infinie au problème de la limite de en l'infini : intuitivement, on pourrait se dire qu'une somme infinie ne peut qu'être infinie, mais en fait non, celle ci converge.
    École d'ingénieurs + M1 Physique Fondamentale

  16. #12
    Le lyceen59155

    Re : Fonction integrable.

    Merci pour l'explication graphique , c'etait exactement mon problème.

  17. Publicité
  18. #13
    Thorin

    Re : Fonction integrable.

    J'avais peur de m'être lancé dans un charabia incompréhensible, mais apparemment, non ; tant mieux.
    École d'ingénieurs + M1 Physique Fondamentale

  19. #14
    vinceclo

    Re : Fonction integrable.

    bonjour j'ai un problème pour résoudre une équation trigonométrique, pouvez-vous m'aider svp

  20. #15
    vinceclo

    Re : Fonction integrable.

    sin(3x+pi/6)-cos(x-pi/3) = 0

  21. #16
    sadben2004

    Re : Fonction integrable.

    vinceclo, il fait créer une nouvelle discussion avec ton problème, sinon personne n'y prêtera attention
    Science sans consience n'est que ruine de l'âme

Discussions similaires

  1. fonction intégrable
    Par cchamw dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 05/10/2008, 15h25
  2. fonction intégrable et dérivées
    Par mahuna dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 27/04/2008, 15h05
  3. fonction intègrable .. ?
    Par nassoufa_02 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 26/11/2006, 21h27
  4. Fonction intégrable sur R
    Par Ayrawhsia Aathsir Tia dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 02/03/2006, 17h10
  5. fonction integrable
    Par cindy06 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 22/01/2006, 13h08