Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Equa. diff. (2nd ordre) et dimension.



  1. #1
    Charlottee

    Unhappy Equa. diff. (2nd ordre) et dimension.


    ------

    Bonjour à tous,

    Voici l'exercice qui met poser, et il me pose un petit souci, auriez vous une petite idée :

    Montrer que l'ensemble des solutions de l'équation différentielle y"-3y'+y=x-3 est un espace affine de dimension 2. En donner un repère.

    Pour cela on utilise SGEC = SGEH + SPEC, il vient :

    SGEH :
    On pose l'équaion caractéristique : Y(r) = r²-3r+1=0
    On obtient deux solutions : x1= 3+√5 /2 et x2= 3-√5 /2
    Solution de la forme f : x-> a exp(x1.x) + bexp(x2.x) où a et b sont des constantes.

    SPEC :
    On peut voir une solution évidente x : (x)"-3(x)'+x=x-3

    On utilise le théorème de superposition, il vient comme solution de l'équa diff :
    f: x->a exp(x1.x) + bexp(x2.x) +x

    Or on veut montrer que l'ensemble des solutions est de dimension 2, c-à-d quelle forme un plan d'équation :
    y = ax1 +bx2

    Mon problème est de montrer que cette solution est bien de dimension 2, c-à-d qu'un des termes de la solution est combinaison linéaire des autres.

    Voilà si qql'un peut m'aider ça serait sympas, bonne journée.

    -----

  2. #2
    God's Breath

    Re : Equa. diff. (2nd ordre) et dimension.

    Citation Envoyé par Charlottee Voir le message
    Or on veut montrer que l'ensemble des solutions est de dimension 2, c-à-d quelle forme un plan d'équation :
    y = ax1 +bx2
    Attention on demande d'établir que l'ensemble des solutions est un espace affine, pas un espace vectoriel.

    On ne cherche donc pas une base d'un plan vectoriel, mais un repère d'un plan affine, mais quel type de repère ? Il peut s'agir
    – d'un repère cartésien constitué d'une origine, point de l'espace affine, et d'une base du plan vectoriel directeur ;
    – d'un repère affine constitué de trois points affinement libres du plan affine.

    En se rappelant que, si est un repère affine du plan, alors est un repère cartésien, et, réciproquement, si est un repère cartésien, alors est un repère affine.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

Discussions similaires

  1. Equa diff du 1er ou 2nd ordre avec second membre
    Par Loukassit0 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 28/10/2008, 21h03
  2. Equa diff, 2 paramètres, 2nd degré
    Par Birdland dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 11/06/2008, 09h14
  3. Dimension espace vectoriel equa diff
    Par alphons dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 29/03/2008, 12h20
  4. Equa Diff du 2nd ordre
    Par invite67423456789 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 19/04/2007, 13h23
  5. Equa diff 2nd ordre ==>sys equa diff 1er ordre
    Par oli78 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 20/03/2006, 12h55