Une limite de suite bien étrange !
Répondre à la discussion
Affichage des résultats 1 à 18 sur 18

Une limite de suite bien étrange !



  1. #1
    invite92876ef2

    Une limite de suite bien étrange !


    ------

    Bonjour.

    Soit :

    U1 = E(Pi) / 1²

    U2 = [ E(Pi)+E(2Pi) ] / 2²

    Un = [ E(Pi)+E(2Pi)+...+E(nPi) ] / n²

    On sait que : x - 1 < E(x) =< x



    Montrer que la suite (Un) converge vers Pi/2.



    Ce que je pense : Ne faut-il pas que je me serve de :
    l Un - Pi/2 l < Epsilone ?
    Dans ce que je fais comment pour soustraire ? Quel est la valeur de Epsilone ???

    Merci de m'aider !!!

    -----

  2. #2
    invite3bc71fae

    Re : Une limite de suite bien étrange !

    Essaie d'encadrer ta suite entre deux suites adjacentes qui tendent vers Pi grace à la définition de la partie entière.

  3. #3
    invite92876ef2

    Re : Une limite de suite bien étrange !

    J'ai obtenu ceci :

    Soit k un entier :

    SOMME [kPi - 1] < SOMME [E(kPi)] =< SOMME [kPi]

    C'est ça ? Je fais quoi maintenant ???

    Merci !!

  4. #4
    invite3bc71fae

    Smile Re : Une limite de suite bien étrange !

    Tu montres que la différence des deux suites tend vers 0.

  5. A voir en vidéo sur Futura
  6. #5
    inviteaf1870ed

    Re : Une limite de suite bien étrange !

    Tu y es presque. Tu peux mettre pi en facteur et écrire ta somme de gauche sous la forme :

    Pi*somme(k)-somme(1)

    Tu dois savoir ce que vaut la somme des n premiers nombres ?

    Je te laisse faire la meme chose à droite.

  7. #6
    invite92876ef2

    Re : Une limite de suite bien étrange !

    Ouuah la la c'est difficile ça !

    Je ne vois vraiment pas comment faire après !

    Même montrer que les deux sont croissantes et décroissante je ne vois pas par quel chemin je dois passer !

    Je fais Un+1 - Un mais je ne vois pas comment faire là !
    Il faut que je divise Un+1 par (n+1)² et Un par n² ?
    Même, je trouve un truc très louche !

    Merci de m'éclairer !

  8. #7
    invite3bc71fae

    Cool Re : Une limite de suite bien étrange !

    Ce sera sans doute inutile, excuse moi, le théorème des gendarmes est suffisant... donc montre que ces deux suites ont la même limite.

  9. #8
    invite92876ef2

    Re : Une limite de suite bien étrange !

    justement, leur limite est de Pi/2, sûr, mais comment je dois commencer ????

    Merci !

  10. #9
    invite3bc71fae

    Re : Une limite de suite bien étrange !

    Comme dit Ericc, tu connais la somme d'une suite arithmétique: tu n'as qu'à t'en servir pour connaître le terme d'indice n de tes deux suites.

  11. #10
    inviteaf1870ed

    Re : Une limite de suite bien étrange !

    Tu n'as pas besoin de faire des choses compliquées :

    la suite de gauche vaut pi*somme(k)-n : on a mis pi en facteur il reste la somme des n premiers nombres et on retranche 1 à chaque fois. Comme il y a n termes on retranche n*1=n.

    Tu dois savoir que la somme des n premiers nombres vaut n(n+1)/2.

    Donc la suite de gauche vaut pi*n*(n+1)/2 - n.

    Ta suite Un est égale à SOMME [E(kPi)] /n^2

    Donc...

  12. #11
    invite92876ef2

    Re : Une limite de suite bien étrange !

    SOMME (x - y) = SOMME (x) - SOMME (y) ???

    EDIT : SOMME (k) jusqu'à n, c'est n(n+1) /2 ???

  13. #12
    inviteaf1870ed

    Re : Une limite de suite bien étrange !

    Bien sur c'est la propriété d'associativité de la somme !!!

    Pour t'en convaincre :
    (x1-y1)+(x2-y2)+(x3-y3) =(x1+x2+x3)-(y1+y2+y3)

  14. #13
    invite92876ef2

    Re : Une limite de suite bien étrange !

    aaaaaaaaaah bien voilààà il fallait le dire !!! lol

    Maintenant, est-ce que : SOMME (k) jusqu'à n, c'est n(n+1) /2 ???

  15. #14
    invite92876ef2

    Re : Une limite de suite bien étrange !

    comment as-tu trouvé le "n(n+1) /2" ? d'où il vient ? de quelle somme ?

    merci!

  16. #15
    inviteab2b41c6

    Re : Une limite de suite bien étrange !

    Replonge toi dans tes cours de première sur la somme des suites arithmétiques.

  17. #16
    invite92876ef2

    Re : Une limite de suite bien étrange !

    Ca y est ! J'ai fini tout !
    En fait, K€IN*, donc la somme des n termes de k est bien la somme d'une suite arithmétique ! J'ai bien compris...

    Moral de l'exo :
    SOMME (x - y) = SOMME x - SOMME y.
    on a : SOMME x. Dans le symbole de la somme (Epsilone majuscule), on place en dessous de combien on augmente, tous les x, et au dessus, jusqu'à où !!!

    Cool, je me sens bien tranquille, merci pour tous vos conseils...

    A très bientôt !

  18. #17
    inviteab2b41c6

    Re : Une limite de suite bien étrange !

    C'est un sigma, epsilon ne ressemble pas du tout à ça.

  19. #18
    invite92876ef2

    Re : Une limite de suite bien étrange !

    Sigma majuscule, pardon ^^ j'me suis trompé :$ ^^

Discussions similaires

  1. suite phil101, phenomene etrange dans le ciel
    Par invite7f0a6e2e dans le forum Archives
    Réponses: 7
    Dernier message: 22/01/2008, 13h10
  2. term s , limite étrange...
    Par invitec7f96499 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 08/12/2007, 23h37
  3. Une bien étrange jupiter
    Par invite47c25a3f dans le forum Matériel astronomique et photos d'amateurs
    Réponses: 4
    Dernier message: 17/06/2007, 22h19
  4. Singularité... Un bien étrange concept !
    Par inviteba0a4d6e dans le forum Archives
    Réponses: 7
    Dernier message: 12/06/2004, 20h57
  5. une suite étrange
    Par invite90610aa0 dans le forum Mathématiques du supérieur
    Réponses: 21
    Dernier message: 06/05/2004, 20h01