Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

Intégrale de x*Arctan(x)



  1. #1
    charlie18

    Intégrale de x*Arctan(x)


    ------

    Bonjour tout le monde !

    Dans un exercice, il est demandé de calculer l'intégrale de x*Arctan(x) dx en utilisant l'intégration par partie (l'intégrale est bien donnée sans bornes).
    J'ai donc posé u(x) = Artan(x) et v'(x)=x.
    Et donc u'(x)= 1/(1+x²) et v(x) = x²/2
    Cependant, je me trouve bloqué à la prochaine étape.
    Je noterai int( ) pour le symbole de l'intégrale.
    On sait que int (u(x)*v'(x) dx) = [u(x)*v(x)] - int (u'(x)*vx) dx)
    En utilisant cette formule d'intégration par partie, je me retrouve avec l'égalité suivante :
    int (xArctan(x)dx) = [Arctan(x)*x²/2] - int(x²/(2*(1+x²)))
    Je me trouve coincée pour la seconde integration...
    Est-ce la bonne méthode ?
    Si oui, comment puis-je continuer ?

    Merci beaucoup d'avance !
    Bonne journée !

    Charlie18.

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    Nikko595

    Re : Intégrale de x*Arctan(x)

    Ce ne doit pas être la bonne méthode. Attends, je vais voir mon cours

  5. #3
    deyni

    Re : Intégrale de x*Arctan(x)

    Ce qui te bloque, c'est:
    L'intégrale de x^2/(2*(1+x²))?
    Deynid'oiseaux partout !! :rire:

  6. #4
    Nikko595

    Re : Intégrale de x*Arctan(x)

    Tu peut déjà sortir le "1/2"

  7. A voir en vidéo sur Futura
  8. #5
    deyni

    Re : Intégrale de x*Arctan(x)

    J'aurai fait, une 2eme IPP:

    int (u(x)*v'(x) dx) = [u(x)*v(x)] - int (u'(x)*vx) dx)

    u(x)=x^2/2; v'(x)=1/(1+x^2)
    u'(x)=x; v(x)=arctan(x).

    Donc, le resultat, de ta 2eme integrale est:
    -1/2(x-arctan(x))
    Deynid'oiseaux partout !! :rire:

  9. #6
    charlie18

    Re : Intégrale de x*Arctan(x)

    Citation Envoyé par deyni Voir le message
    J'aurai fait, une 2eme IPP:

    int (u(x)*v'(x) dx) = [u(x)*v(x)] - int (u'(x)*vx) dx)

    u(x)=x^2/2; v'(x)=1/(1+x^2)
    u'(x)=x; v(x)=arctan(x).

    Donc, le resultat, de ta 2eme integrale est:
    -1/2(x-arctan(x))
    Ne serait-ce pas plutôt -1/2 (x*Arctan(x)) ? Puisque c'est u'*v

  10. Publicité
  11. #7
    charlie18

    Re : Intégrale de x*Arctan(x)

    Il faudrait donc refaire une 3eme IPP après celle-ci ?

  12. #8
    God's Breath

    Re : Intégrale de x*Arctan(x)

    Citation Envoyé par deyni Voir le message
    L'intégrale de x^2/(2*(1+x²))?
    IL faudrait apprendre les techniques élémentaires du calcul des primitives :

    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  13. #9
    charlie18

    Re : Intégrale de x*Arctan(x)

    Encore faut-il y penser...

    Avec ta méthode God's Breath, j'obtiens le résultat suivant :

    int (x*Arctan(x)dx) = 1/2 * [x²Arctan(x)] - 1/2 (x-Arctan(x))

    J'ai une autre question. Quand on demande une intégration par partie sans bornes, ne faut-il pas plutôt écrire : int (x*Arctan(x)dx) = 1/2 * (x²Arctan(x)) - 1/2 (x-Arctan(x)) soit int (x*Arctan(x)dx) = 1/2 * (x²Arctan(x)-x+Arctan(x)) ?

  14. #10
    ericcc

    Re : Intégrale de x*Arctan(x)

    On peut aussi calculer la primitive de Atan(x), c'est facile par IPP, puis faire l'IPP de xAtanx dans l'autre sens : u'=atan(x) v=x.
    C'est peut être plus rapide...

  15. #11
    charlie18

    Re : Intégrale de x*Arctan(x)

    Merci beaucoup à tout le monde pour votre aide !

    Bonne journée ! =)

  16. #12
    breukin

    Re : Intégrale de x*Arctan(x)

    Il ne s'agit pas d'y penser, il s'agit de la réduction des fractions rationnelles en éléments irréductibles.

  17. Publicité

Discussions similaires

  1. integrale de arctan(t), paramétrée.
    Par deyni dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 26/02/2011, 21h40
  2. Intégrale de Arctan(x)/x
    Par Texanito dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 06/03/2010, 12h05
  3. .Intégrale de Arctan(rac(1-x²))dx.
    Par TercKuor dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 19/02/2010, 17h02
  4. arctan
    Par yongqi dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 18/10/2009, 14h27
  5. Arctan
    Par AnaïsD dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 24/04/2007, 17h32