Suite par integrale
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Suite par integrale



  1. #1
    invite1c650f1c

    Suite par integrale


    ------

    Salut tout le monde,

    ,

    Montrer que




    Il y en a plusieurs de questions avant celle la, mais je ne trouve aucun rapport avec la question. Aidez moi SVP . Merci d'avance.

    -----

  2. #2
    Tiky

    Re : Suite par integrale

    Bonsoir,

    Il serait peut-être bien de donner ces questions...

  3. #3
    invite1c650f1c

    Re : Suite par integrale

    L'exercice complet :

    , on pose


    1)- Montrer que : , puis en déduire la limite de

    2)- En utilisant l’intégration par partie, montrer que


    3)- , on pose :

    A- Quelque soit x dans R, F est dérivable sur R. Trouver F'(x) quelque soit x dans R.
    B- En déduire l'expression de la fonction F sur , puis trouver la valeur de l’intégrale.

    4)

    A- Montrer que : , puis calculer .

    B- Montrer que :

    C- Montrer que :

  4. #4
    Tiky

    Re : Suite par integrale

    Bonjour,

    Les questions précédentes étaient bien utiles. L'idée est de faire une sorte de démonstration par récurrence.

    Montre que la propriété est vraie pour les deux couples et puis en utilisant la question 2, tu démontres que si elle est vraie pour alors elle est vraie pour .

    Pour les initialisations, fais un calcul d'intégral brutal, par exemple avec un changement de variable pour la première et une ipp pour la seconde.
    Dernière modification par Tiky ; 08/06/2011 à 16h55.

  5. A voir en vidéo sur Futura
  6. #5
    Tiky

    Re : Suite par integrale

    Je voulais dire plutôt un changement de variable pour la première et une ipp pour la seconde.

  7. #6
    invite1c650f1c

    Re : Suite par integrale

    Wow merci, j'ai pu répondre à la question, maintenant je dois calculer la dernière limite



    il y a un pi/2, donc à mon avis je dois utiliser la question qu'on vient de démontrer ?! Mais comment ?

  8. #7
    Tiky

    Re : Suite par integrale

    Oui tu dois utiliser la question précédente.
    La question A te dit que équivaut à . Qu'est-ce que tu peux en déduire à partir de la question B ?

Discussions similaires

  1. Relation entre intégrale et suite par récurrence
    Par inviteccf6d01f dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 10/11/2009, 17h58
  2. Limite de suite définie par une intégrale.
    Par invitedb2255b0 dans le forum Mathématiques du collège et du lycée
    Réponses: 23
    Dernier message: 22/08/2009, 20h14
  3. suite definie par une integrale
    Par invite3c19aac3 dans le forum Mathématiques du collège et du lycée
    Réponses: 45
    Dernier message: 15/03/2009, 11h32
  4. limite suite défine par une integrale
    Par invite8aeefd6e dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 03/06/2008, 11h07
  5. Suite défini par une intégrale.
    Par invite0c5534f5 dans le forum Mathématiques du collège et du lycée
    Réponses: 11
    Dernier message: 16/03/2008, 20h28