Equivalent d'une suite recurrente non lineaire.
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Equivalent d'une suite recurrente non lineaire.



  1. #1
    invited7e4cd6b

    Equivalent d'une suite recurrente non lineaire.


    ------

    Bonsoir,
    Je veux trouver l'equivalent de la suite definit comme suit: quand n tend vers l'infini. Sachant que
    J'ai essaye de poser des suites intermédiaires (log et exponentielle) mais ca ne donne rien.La limite est bien 0.

    -----

  2. #2
    inviteea028771

    Re : Equivalent d'une suite recurrente non lineaire.

    Hum... comment la limite peut être 0 puisque la suite est croissante?

    U(n+1) - U(n) = U(n)² > 0

    La suite est presque stationnaire mais croissante quand U(n) est petit, puis elle explose littéralement quand U(n) > 1.

    A partir d'une certaine valeur k de n, la suite est environ en

  3. #3
    Tiky

    Re : Equivalent d'une suite recurrente non lineaire.

    Bonjour,

    Cette suite ne tend pas vers 0. En effet, . La suite est donc croissante et de premier terme strictement positif. Elle ne peut pas converger vers 0.
    En revanche, il est facile de constater que la seule limite possible de la suite est 0. Donc cette suite ne converge pas.

  4. #4
    invited7e4cd6b

    Re : Equivalent d'une suite recurrente non lineaire.

    Je suis vrmt desole mais -1<Uo<0.

  5. A voir en vidéo sur Futura

Discussions similaires

  1. équivalent suite récurrente
    Par invited6262d2a dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 06/12/2010, 17h40
  2. Suite récurrente linéaire d'ordre 2 et suite intermédiaire géométrique
    Par Seirios dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 14/09/2008, 14h40
  3. Etude d'une suite récurrente
    Par invitee6dd7477 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 15/09/2007, 21h50
  4. Equivalent d'une suite récurrente
    Par invite42abb461 dans le forum Mathématiques du supérieur
    Réponses: 27
    Dernier message: 13/06/2007, 17h53
  5. suite récurrente et équivalent...
    Par invite21126052 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 07/05/2006, 20h19