suite récurrente et équivalent...
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

suite récurrente et équivalent...



  1. #1
    invite21126052

    suite récurrente et équivalent...


    ------

    bonjour à tous!

    voilà, j'ai un petit problème, il faudrait pour un exercice que j'arrive à montrer que: pour n tendant vers l'infini...

    mais je ne sais pas du tout comment faire (si tant est que cela soit juste, ça a été conjecturé avec l'aide de la calculatrice!)

    donc si vous avez des pistes, cela m'aiderait bien...

    (l'exercice est: calcul de l'éventuelle limite de la suite définie par le point d'indice n+3 est l'isobarycentre des 3 points précédents, et les 3 premiers points sont les sommets d'un triangle ABC;
    je me place dans le repère (A, AB, AC), je calcule aisément les coordonnées de cet isobaryentre = moyenne arith des abscisses, et des ordonnées, et pour n>3, je connais le dénominateur des coordonnées: et là, j'ai essayé de trouver une fonction qui me donnerait le numérateur; les premiers termes de la suite sont:
    0, 1, 0, 1/3, 4/9, 7/27, 28/81, .... )

    merci à tous!

    -----

  2. #2
    invited5b2473a

    Re : suite récurrente et équivalent...

    tu peux directement exprimer u(n) en fct de n.

  3. #3
    invite21126052

    Re : suite récurrente et équivalent...

    vraiment, je peux?

    la démarche est analogue à celle utilisée pour les suites récurrentes d'ordre 2 je suppose...

    le problème, c'est que qd j'essaye de trouver une solution sous la forme (an^2+bn+c)*3^n, je trouve des coefficiens a négatifs.... (apparemment, 3 est la seule solution de mon équation caractéristique)

    donc.... je ne sais pas trop quoi faire...

  4. #4
    invite97a92052

    Re : suite récurrente et équivalent...

    Si tu te sens de le trouver, voici comment s'exprime ta suite... (merci mathematica)



    A mon avis il faudrait passer par une autre méthode... car ça me semble un peu compliqué (en plus d'être hors programme si tu es en prépa) !

  5. A voir en vidéo sur Futura
  6. #5
    invite21126052

    Re : suite récurrente et équivalent...

    merci beaucoup!

    pour être tout à fait franc, au lieu de passer par cette suite qui m'indiquait le numérateur, j'ai pris directement ma suite d'origine...
    et je suis passé par maple (maudite calculatrice qui m'a donné que la racine non complexe), et je m'en sors à peu près.... excepté que la forme est horrible:

    -3*sin(2*arctan(2^(1/2)))/ (-4*sin(2*arctan(2^(1/2)))-3*2^(1/2)+2^(1/2)*cos(2*arctan(2^(1/2))))+ (1/3*3^(1/2))^n*(3*sin(2*arctan(2^(1/2)))*cos(n*(-arctan(2^(1/2))+Pi)) /(-4*sin(2*arctan(2^(1/2)))-3*2^(1/2)+2^(1/2)*cos(2*arctan(2^(1/2))))+ 3*(-3+cos(2*arctan(2^(1/2))))*sin(n*(-arctan(2^(1/2))+Pi))/(-4*sin(2*arctan(2^(1/2)))-3*2^(1/2)+ 2^(1/2)*cos(2*arctan(2^(1/2))))))

    mais bon, j'ai ma solution, j'ai encore quelques exos à faire... donc il se contentera de cela! (j'expliquerai grosso modo ma méthode...)

    en tout cas, merci à tous!

Discussions similaires

  1. problème de suite récurrente...
    Par invitea0db811c dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 30/11/2007, 22h48
  2. [TS] Suite récurrente majorée
    Par inviteec581d0f dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 26/10/2007, 13h30
  3. Equivalent d'une suite récurrente
    Par invite42abb461 dans le forum Mathématiques du supérieur
    Réponses: 27
    Dernier message: 13/06/2007, 17h53
  4. convergence suite récurrente
    Par invite8a4ca22e dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 28/11/2006, 21h26
  5. suite récurrente, prblm
    Par invite617c2059 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 30/08/2006, 15h16