Répondre à la discussion
Affichage des résultats 1 à 27 sur 27

tangente



  1. #1
    Jojo1989

    tangente


    ------

    bonjour est-ce que quelqu'un pourrait me dire comment il faut s'y prendre pour montrer que 2 courbes admettent une même tangente en un point dont il faut déterminer les coordonnées?
    SVP, merci

    -----

  2. Publicité
  3. #2
    Jojo1989

    Re : tangente

    J'ai déjà essayé pleins d'équations mais aucune ne me donne les bonnes coordonnées du point. Alors je ne sais plus de quelle manière je dois m'y prendre.

  4. #3
    martini_bird

    Re : tangente

    Salut et bienvenue,

    est-ce que tu sais écrire l'équation de la tangente d'une courbe en un point?

  5. #4
    Jojo1989

    Re : tangente

    biensur, y-f(a)=f'(a)(x-a)
    Comme données j'ai deux fonctions.

  6. A voir en vidéo sur Futura
  7. #5
    Jojo1989

    Re : tangente

    le point que je dois trouver à pour coordonnées (a,f(a)),mais encore faut-il trouver la bonne démarche pour y arriver!

  8. #6
    martini_bird

    Re : tangente

    Pour que les deux courbes admettent la même tangente en un point d'abscisse x, il faut donc qu'elle se "coupe" en ce point: f(x)=g(x). De plus, les tangentes doivent être confondues donc les coefficient directeurs doivent être égaux: f'(x)=g'(x)...

    Cordialement.

  9. Publicité
  10. #7
    Jeanpaul

    Re : tangente

    Est-ce que les 2 courbes ont la même tangente au point où elles se coupent ? Si oui, voir la remarque de martini_bird.
    Mais on peut aussi chercher le cas où on veut tracer une droite qui soit tangente à 2 courbes, pas forcément au même point, c'est beaucoup moins simple.

  11. #8
    Jojo1989

    Re : tangente

    Ok oui j'avais déja effectuer cette équation f'(x)=g'(x), enfait j'ai dérivé les deux fonctions qui m'étaient données, puis je les ai mises en équation, mais ensuite je ne sais plus comment continuer! Dois-je faire en sorte ke l'équation soit égale à 0 , puis faire un tableau de signe ou...... En tout cas j'ai déja essayé par pleins de moyens mais j'y arrive pas parce que je connais les coordonnées que je devrais trouver mais je ne les trouves pas!

  12. #9
    Jojo1989

    Re : tangente

    oui oui elles ont la même tangente en un point!
    Encore merci à vous deux de prêter une attention à ma question!

  13. #10
    matthias

    Re : tangente

    Citation Envoyé par Jojo1989
    Ok oui j'avais déja effectuer cette équation f'(x)=g'(x)
    Sans oublier f(x) = g(x)

    Mais on ne peut pas t'aider plus sans connaître tes fonctions ...

  14. #11
    martini_bird

    Re : tangente

    Tu peux donner l'expression de tes courbes, stp?

    EDIT: Grillé: la roue ne cesse de tourner aujourd'hui!

  15. #12
    Jojo1989

    Re : tangente

    Ahhhhhhh oui je crois que j'ai une idée, devrait-je faire un système avec les 2 équat° obtenues de f(x)=g(x), et puis de f'(x)=g'(x)?
    Les deux fonctions sont f1(x)=-X²+ 1/2
    f2(x)= X² - 2X +1

  16. Publicité
  17. #13
    matthias

    Re : tangente

    Oui, mais comme en l'occurence les équations f(x) = g(x) et f'(x) = g'(x) n'admettent qu'une solution chacune, il suffit de vérifier que c'est la même (il y en a une plus simple que l'autre à résoudre).

  18. #14
    Jojo1989

    Re : tangente

    ah ben non je ne peut pas vu que ds ce cas je n'aurai qu'une inconnue....x

  19. #15
    matthias

    Re : tangente

    Citation Envoyé par Jojo1989
    ah ben non je ne peut pas vu que ds ce cas je n'aurai qu'une inconnue....x
    Tu as donc un système de deux équations à une inconnue.

  20. #16
    Jojo1989

    Re : tangente

    oui je n'obtiendrais que x, donc je saurais qu'au point d'abscisse x, j'ai une même tangente à ces deux courbes!
    Pour trouver l'ordonnée de ce point où les deux courbes admettent la même tangente je n'aurais plus qu'à cherché l'image de x , en l'occurence f(x)?

  21. #17
    Jojo1989

    Re : tangente

    L'image de x par une des deux fonctions?

  22. #18
    matthias

    Re : tangente

    Oui c'est ça.

  23. Publicité
  24. #19
    Jojo1989

    Re : tangente

    Merci bcp pour votre aide !

  25. #20
    Jojo1989

    Re : tangente

    Enfait j'ai encore un problème( je sais je ne suis pas très doué en maths) mais l'équation -2x²+2x-1/2=0 je pourrais la simplifier comment?

  26. #21
    martini_bird

    Re : tangente

    Là, tu utilises l'arme absolue: le discriminant.

    Sinon tu divises tout par -2 et tu mets sous forme canonique.

    Cordialement.

  27. #22
    Jojo1989

    Re : tangente

    Mais pour que ca puisse rentrer ds le système ou il y à déja -4x-2=0 je met sous forme canonique? Ou je peux trouver x grâce à la première ligne(-4x-2=0) puis remplacer ds l'autre équation( -2x²+2x-1-2=0) par ce que j'ai trouvé?

  28. #23
    kNz

    Re : tangente

    Bonjour,

    Est-ce qu'il serait possible d'avoir le sujet complet même si je ne peux pas t'aider, ça m'entraînera

    Merci beaucoup

    Cordialement.

    kNz.

  29. #24
    Jojo1989

    Re : tangente

    pas de problème tt le devoir ou juste cet exo? Tu es en quel classe? C'est du niveau 1èreS

  30. Publicité
  31. #25
    matthias

    Re : tangente

    Citation Envoyé par Jojo1989
    Mais pour que ca puisse rentrer ds le système ou il y à déja -4x-2=0 je met sous forme canonique? Ou je peux trouver x grâce à la première ligne(-4x-2=0) puis remplacer ds l'autre équation( -2x²+2x-1-2=0) par ce que j'ai trouvé?
    Ce n'est pas -4x-2=0 tu as fait une erreur de signe. Mais cette équation te permet déjà d'avoir x. Pas besoin de résoudre l'autre équation donc (quoique tu pourrais y voir une identité remarquable, donc pas de calcul de discriminant). Il suffit de vérifier que la solution que tu as trouvé pour une équation est bien solution de l'autre.

  32. #26
    Jojo1989

    Re : tangente

    merci bcp de mavoir averti!

  33. #27
    Jojo1989

    Re : tangente

    c vré franchement, quel âne je suis -4x+2=0 pfffffffff

Discussions similaires

  1. Tangente
    Par scholasticus dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 29/11/2007, 20h46
  2. Tangente
    Par sonia06 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 06/09/2007, 19h07
  3. tangente
    Par jennybb dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 18/06/2006, 22h36
  4. tangente 1°s
    Par albja dans le forum Mathématiques du collège et du lycée
    Réponses: 24
    Dernier message: 30/11/2005, 18h08
  5. Tangente
    Par Steffany dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 08/02/2005, 13h38