Problème d'accroissements finis
Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

Problème d'accroissements finis



  1. #1
    invitea86adc00

    Problème d'accroissements finis


    ------

    Bonjour, j'ai un DM à faire en mathématiques et je suis bloqué à un endroit sur les accroissements finis.
    il faut que je prouve que pour tout x appartenant à R, x<ch(x)-1<xsh(x)
    En utilisant ce théorème sur [0;x] avec la fonction f(x)=ch(x) j'arrive à trouver que

    0<ch(x)-1<xsh(x) mais je n'arrive pas à introduire x à gauche.

    Ensuite je suppose qu'il faudrait que je fasse l'étude sur [x;0] pour couvrir R mais j'ai mon inégalité qui est inversée et je n'arrive pas non plus à introduire x.

    Si jamais quelqu'un pourrait m'aider ce serait avec grand plaisir.
    Cordialement.
    Blueshift

    Ps: les < sont des inégalités larges ("inférieur ou égal")

    -----

  2. #2
    gg0
    Animateur Mathématiques

    Re : Problème d'accroissements finis

    Bonjour.

    C'est normal que tu n'y arrives pas, c'est faux. pour x compris entre 0 et un peu plus de 1,616, x est supérieur à ch(x)-1.

    Cordialement.

  3. #3
    invitea86adc00

    Re : Problème d'accroissements finis

    Bonjour, merci beaucoup, dans ce cas, je vais envoyer un mail à mon professeur.
    Bonne journée.
    Blueshift

Discussions similaires

  1. thérorème des accroissements finis
    Par invite1b4cbead dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 05/12/2012, 21h04
  2. Théorème des accroissements finis
    Par inviteec9aaaba dans le forum Mathématiques du supérieur
    Réponses: 31
    Dernier message: 17/01/2010, 22h17
  3. Probléme avec le théorème des accroissements finis ! ! !
    Par invitef95c2687 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 17/01/2009, 20h13
  4. Accroissements finis
    Par invite99706724 dans le forum Mathématiques du supérieur
    Réponses: 20
    Dernier message: 12/11/2008, 22h48
  5. accroissements finis
    Par invite7909d2c1 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 21/10/2007, 22h23