Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

énigme sur les nombres complexes



  1. #1
    greg-richard

    à quoi est égale racine carré de (-i) a votre avis.

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    shinji

    c'est pas un truc du genre (racine carré de 2)/2 + i*(racine carré de 2)/2 ?

  5. #3
    C++

    Absolument,si ce n'est que les signes de la partie reele et imaginaire sont opposés.

  6. #4
    pallas

    tu peux simplement remarquer que [(1-i)/(rac(2)] au carré est égal à -i
    A +

  7. A voir en vidéo sur Futura
  8. #5
    curieux

    Reste qu'il y a à traiter l'ambiguité du statut différent de la racine carré dans R et dans C:

    Dans R, quand on parle de LA racine carré d'un nombre b, on parle DU nombre POSITIF (s'il existe) dont le carré vaut b

    Dans C, on parle DES racines nième de b, ce sont LES n complexes z tels que z<sup>n</sup> = b. Ces nombres sont faciles à trouver dès qu'on écrit b sous forme exponentielle b = re<sup>ia</sup>, LES racines nièmes de b sont les complexes dont le module est LA racine nième de r, et dont les arguments sont a/n, (a+2pi)/n, (a + 4pi)/n)....(a + 2(n-1)pi)/n

    Ici nous sommes dans C, il faut donc parler DES racines carrés de -i, dont le module est 1 et dont les arguments sont -pi/4 et 3pi/4

    c'est à dire rac(2)/ 2 - i rac(2)/2 ET - ra(2)/2 + irac(2)/2

  9. #6
    Quinto

    La racine carrée n'est pas définie sur C.

  10. Publicité
  11. #7
    curieux

    La racine carrée n'est pas définie sur C.

    Mais si.... à moins que tu ne l'appelles la racine deuxième si tu veux!!!

    Comme je l'explique dans mon intervention (l'as-tu comprise?) LES racineS nièmes sont définies dans C,
    racineS deuxièmes, racineS troisièmes, racineS quatrièmes etc.
    D'où l'ambiguité pour la racine deuxième, seconde, carrée qui n'a pas le même sens dans R et dans C

  12. #8
    sacapatate

    Les nombres complexes portent bien leur nom!

  13. #9
    Rincevent

    Quinto parlait de la fonction "racine carrée" qui n'est pas définie de manière unique dans C, tu dois soit passer par ce que l'on appelle les surfaces de Riemann soit faire une coupure dans le plan si tu veux que la fonction soit univalue.

    Voir par exemple: http://fr.wikipedia.org/wiki/Holomorphe

  14. #10
    Quinto

    Citation Envoyé par curieux
    La racine carrée n'est pas définie sur C.
    Comme je l'explique dans mon intervention (l'as-tu comprise?)
    Oui je te remercie, ca va pour moi.
    Je crois que Rincevent a précisé ma pensée....

  15. #11
    greg-richard

    enfêt je posait cette question car en partant de rac(-i) j'avais trouvé cela:

    rac(-i)
    =module de rac(i)
    =module de i puissance 1/2
    =module de i au carré puissance 1/4
    =module de -1 puissance un quart
    =(module de -1) à la puissance 1/4
    =-1 puissance 1/4
    =i puissance 1/2
    =rac (i)

    et si rac(i)=rac(-i)
    1=-1

    mais ou est l'erreur?

  16. #12
    greg-richard

    psardon pr la grossière faute d'orthographe à la première ligne

  17. Publicité
  18. #13
    curieux

    Citation Envoyé par greg-richard
    en partant de rac(-i) j'avais trouvé cela:

    rac(-i)
    =module de rac(i)
    =module de i puissance 1/2
    =module de i au carré puissance 1/4
    =module de -1 puissance un quart
    =(module de -1) à la puissance 1/4
    =-1 puissance 1/4
    =i puissance 1/2
    =rac (i)

    et si rac(i)=rac(-i)
    1=-1

    mais ou est l'erreur?
    Pratiquement à toutes les lignes
    rac(-i)
    comme te l'ont dit rincevent, quinto et moi-même, on ne peut pas parler de LA rac(-i) car il en existe deux

    rac(-i)= module de....
    le module est un réel positif ou nul, LES rac(-i) sont des complexes non réels donc pas d'égalité

    i puissance 1/2
    comme on ne peut pas parler de LA racine carrée, on ne peut pas plus parler de LA puissance 1/2 (2 complexes possibles) ni de LA puissance 1/4 (4 complexes possibles)

    (module de -1) à la puissance 1/4 =-1 puissance 1/4
    module de -1 = 1 et non -1

    Bilan, comme le dit sacapatate, les complexes sont ... complexes
    pas de relation d'ordre intuitive, pas de puissance 1/n, pas d'unicité de pour la racine nième, statut du module différent de celui de la valeur absolue....

    Mieux vaut donc rester sur les opérations basiques dont on est sur. Dommage pour l'imagination mais tant mieux pour la prudence.

  19. #14
    greg-richard

    J'suis quand même pas très doué...
    enfin merci de toutes ces informations. Je crois que je vais retourner devant mes cours sur les nombres complexes.

  20. #15
    Le_Sphinx

    rac(i)=rac(cos(pi/2)+isin(pi/2))
    =rac(exp(pi/2))
    =exp((pi/2)*(1/2))
    =exp(pi/4)
    =cos(pi/4)+isin(pi/4)
    =(rac2)/2+i*(rac2)/2

    Et rac(i)=rac(i^5)
    =i^(5/2)
    =i^2 * i^(1/2)
    =-rac(i)

Discussions similaires

  1. [TS]Question sur les nombres complexes
    Par Billie_Jean dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 09/05/2007, 08h24
  2. [TS] Exercice sur les nombres complexes
    Par Anelor4488 dans le forum Mathématiques du collège et du lycée
    Réponses: 15
    Dernier message: 26/12/2006, 21h24
  3. TS : DM sur les nombres complexes
    Par tipoulette dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 10/11/2006, 18h58
  4. Interrogation sur les nombres complexes
    Par bedbed dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 11/11/2005, 01h36
  5. Problème sur les nombres complexes
    Par adri33170 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 13/10/2005, 17h55