une injection naturelle non continue
Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

une injection naturelle non continue



  1. #1
    invite363c0a61

    une injection naturelle non continue


    ------

    Bonjour à tous.
    Si S(1) est l'ensemble des suites sommables et S(2) celui des suites à carrés sommables, il est immédiat que ce sont des espaces vectoriels normés (les normes: somme et somme des carrés). Aussi, S(1) est dans S(2) et l'inclusion est stricte.
    Cela dit, il semblerait que l'injection naturelle de S(1) dans S(2) ne soit pas continue.
    Je ne me visualise pas du tout cette idée. Pourriez-vous m'exhiber une suite de suites de somme aussi petite que l'on veut mais de somme de carrés minorée par une quantité positive et non nulle ?
    Merci.

    -----

  2. #2
    invite363c0a61

    Re : une injection naturelle non continue

    Je veux dire, est-ce que vous pourriez m'apporter de la lumière à ce sujet ?

  3. #3
    gg0
    Animateur Mathématiques

    Re : une injection naturelle non continue

    Bonjour.

    Tu es sûr pour la norme sur S(1) ?

    Cordialement.

  4. #4
    invite363c0a61

    Re : une injection naturelle non continue

    Sûr de quoi?! Si c'est bien une norme? Faudrait-il​ que je précise:"Somme des modules" et "somme des carrés des modules"?

  5. A voir en vidéo sur Futura
  6. #5
    invite9dc7b526

    Re : une injection naturelle non continue

    Donc il faut que tu considères les séries absolument convergentes et non simplement convergentes.

  7. #6
    gg0
    Animateur Mathématiques

    Re : une injection naturelle non continue

    Je lis ce qui est écrit

  8. #7
    invite51d17075
    Animateur Mathématiques

    Re : une injection naturelle non continue

    @Soel:
    déjà, une norme est de E -> R+
    est ce S(1) satisfait ce critère pour toute suite sommable ?

  9. #8
    invite363c0a61

    Re : une injection naturelle non continue

    Apparemment c'est un problème de terminologie !!!
    Par ›suite sommable‹ dans un espace vectoriel normé complet, j'entends "la série de terme général la norme du n-ième vecteur, est convergente" de même pour ›carré sommable‹. Mais c'est la définition usuelle des espaces l¹(N) et l²(N), non???

    N:="Ensemble des entiers naturels"

  10. #9
    Resartus

    Re : une injection naturelle non continue

    Bonjour,
    Faut-il comprendre que "l'injection naturelle" dont tu parles est simplement l'identité? C'est à dire que la même suite appartient à la fois à l'espace des suites de valeur absolue sommable, et à l'espace des suites de carré sommable?

    Si c'est bien cela, je ne vois pas comment cette injection pourrait ne pas être continue...

    Si on revient aux définitions de la continuité, si deux suites x et y tendent l'une vers l'autre au sens de la norme 1, c'est à dire que somme |xi-yi| est inférieure à epsilon, alors la norme au sens 2 de leur différence, qui vaut somme |xi-yi|² est plus petite que (somme|xi-yi|)² et est donc inférieur à epsilon².

    Quelle est la source qui te fait supposer que ce ne serait pas le cas?


    Ou alors "injection naturelle" a une autre définition....
    Why, sometimes I've believed as many as six impossible things before breakfast

  11. #10
    invite363c0a61

    Re : une injection naturelle non continue

    Utilisez la terminologie que vous voulez (pas très important)! Pourvu que S(1) et S(2) soient respectivement, pour un espace vectoriel normé complet E, l'ensemble des suites de E telles que la série des normes associée soit convergente, et l'ensemble des suites de E telles que la série des carrés des normes associée est convergente.
    Ce sont des espaces vectoriels normés.
    (Typiquement l'ensemble des nombres complexes)
    S(1) est inclus dans S(2), mais l'injection de S(1) dans S(2) n'est pas continue ! Je n'arrive pas à le prouver et je demande éclaircissements. Y aurait-il une erreur dans mon livre ?
    Merci.

  12. #11
    invite363c0a61

    Re : une injection naturelle non continue

    En effet, c'est l'identité.
    Ma source: Cours de Mathématiques MP* — Jean VOEDTS. Page 425
    Il y a des exercices difficiles là dedans qui m'éprouvent beaucoup !

  13. #12
    invite363c0a61

    Re : une injection naturelle non continue

    Bien sûr, la norme sur l'espace des suites à carrés sommables, on prend la valeur absolue pour conserver l'homogénéité.

  14. #13
    invite9dc7b526

    Re : une injection naturelle non continue

    Il suffit de construire une suite d'éléments de S2 qui converge vers une suite qui n'est pas dans S1. On aura ainsi un fermé (la suite et sa limite) dont la préimage par l'injection canonique ne sera pas fermée.

  15. #14
    invite9dc7b526

    Re : une injection naturelle non continue

    ah ben non, c'est idiot ce que j'ai écrit. Ce n'est pas parce que la suite d'éléments de S1 n'a pas de limite dans S1 que l'ensemble n'est pas fermé...

  16. #15
    invite23cdddab

    Re : une injection naturelle non continue

    (que vous appelez S1 ici) est fermé dans , mais pas dans . C'est assez logique car est dense dans (suffit de prendre une suite arbitraire de , et de garder les n premiers termes : les suites sont dans et convergent vers la suite de )

  17. #16
    AncMath

    Re : une injection naturelle non continue

    Oh la la la.
    Prend les k premiers terme d'une suite de , je note plutot que ce sont les notations standards.

    Alors ici désigne la norme de dans ton espace .
    Donc et donc

    Ceci étant vrai pour tout , on en déduit que et l'injection est continue. Il y a bien une erreur dans ton bouquin.
    Dernière modification par AncMath ; 30/06/2017 à 13h53.

  18. #17
    Resartus

    Re : une injection naturelle non continue

    Bonjour,
    En fouillant internet J'ai trouvé ceci : http://perso.crans.org/moussa/TD_AR_2.pdf

    Le point 1 indique bien qu'il y a toujours inclusion stricte et injection continue entre les espaces de norme p et q >p>=1 (si p est en dessous de 1, ce n'est plus une norme, car l'inégalité triangulaire n'est plus vérifiée)

    A noter qu'on retrouve aussi au point 4 les indications de tryss2 pour montrer que l'image est dense.

    Bizarre, car Jean VOEGTS est un prof réputé et son cours est très utilisé.
    Why, sometimes I've believed as many as six impossible things before breakfast

Discussions similaires

  1. Ventilation Naturelle - Naturelle Assistée
    Par bedouin dans le forum Habitat bioclimatique, isolation et chauffage
    Réponses: 163
    Dernier message: 05/03/2016, 18h28
  2. Fonction continue admettant limites finies en +et-infini => uniformément continue??
    Par invite2b14cd41 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 25/01/2011, 00h07
  3. Continue /Continue par morceaux
    Par invite4f299d99 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 09/10/2010, 15h58
  4. Fonction continue en aucun point dont la valeur absolue est continue en tout point
    Par Seirios dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 10/12/2009, 22h25
  5. continue-uniformement continue-lipschitisienne
    Par invite0f6f1e2d dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 30/11/2008, 11h00