Pivot de gauss sur système 2 équations 3 inconnues
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Pivot de gauss sur système 2 équations 3 inconnues



  1. #1
    invitead27f17f

    Pivot de gauss sur système 2 équations 3 inconnues


    ------

    Bonjour, je viens vers vous car je bloque sur le question 2 de mon exercice :Nom : Capture.PNG
Affichages : 924
Taille : 15,7 Ko
    En effet je commence la méthode du pivot en faisant la ligne 2 - 2* ligne 1 pour retirer le x de la ligne 2, mais après cela je suis bloqué
    Merci d'avance pour votre aide

    -----

  2. #2
    gg0
    Animateur Mathématiques

    Re : Pivot de gauss sur système 2 équations 3 inconnues

    Bonjour.

    Je ne peux pas voir ton document pour l'instant ("en attente de validation"), mais à priori, tu as fini le calcul, ne reste plus qu'à interpréter le résultat.

    Cordialement.

  3. #3
    invitead27f17f

    Re : Pivot de gauss sur système 2 équations 3 inconnues

    a mince oui, j'ai le système suivant 2x-5y+3z = 2 et x-6y+z = -7 et je trouve avec gauss x-6y+z = -7 et 7y+z = 16, arrivé la je ne sais pas du tout quoi faire pour faire apparaître l'équation paramétrique.

  4. #4
    gg0
    Animateur Mathématiques

    Re : Pivot de gauss sur système 2 équations 3 inconnues

    Ben ... comme tu peux prendre n'importe quelle valeur pour y, tu peux prendre y comme paramètre. Si tu tiens à ne pas l'appeler y, ton paramètre, tu poses y = t et tu calcules z, puis x en fonction de t.
    En prenant z=t, tu auras un autre système paramétrique, équivalent. Et si tu avais éliminé y au lieu de x, tu aurais pu obtenir un autre système en posant x=t.

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invitead27f17f

    Re : Pivot de gauss sur système 2 équations 3 inconnues

    Super ! Merci de votre aide, je pensais a quelque chose comme ca mais vous avez raisons c'est le y qui me portait a confusion .

    cordialement.

Discussions similaires

  1. Système de 4 équations à 5 inconnues.
    Par invite943ffc65 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 03/11/2011, 16h47
  2. Système de 3 équations à 3 inconnues
    Par invite6de0472f dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 12/06/2010, 09h39
  3. systeme a 2 equations 2 inconnues
    Par invite7ec1a8e4 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 21/03/2010, 18h17
  4. systeme de 2 équations à 2 inconnues
    Par invite7ec1a8e4 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 21/03/2010, 10h22
  5. système de 2 équations à 2 inconnues
    Par invite953e5b9c dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 06/09/2009, 15h28