une propriété de la fonction Gamma
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

une propriété de la fonction Gamma



  1. #1
    invitec9750284

    Unhappy une propriété de la fonction Gamma


    ------

    Bonjour!

    La fonction est définie par Gamma(x) = int(t^(x-1)exp(-t), t=0..infinity)

    Je désire montrer que x*Gamma(x)=Gamma(x+1) par différentiation paramétrique de la fonction I = int ( t^(x-1)*exp(-a*t), t=0..infinity ) avec a comme paramètre.

    Je trouve dI/da (a=1) = -Gamma(x+1)

    Mais pour le reste je ne vois pas du tout.. Donc si quelqu'un pouvait bien m'éclaircir, ce serait sympa !

    A+

    -----

  2. #2
    invite8b04eba7

    Re : une propriété de la fonction Gamma

    Citation Envoyé par The Artist Voir le message
    Je désire montrer que x*Gamma(x)=Gamma(x+1)
    Le plus simple je pense est de faire une intégration par parties.

  3. #3
    invitec9750284

    Re : une propriété de la fonction Gamma

    Citation Envoyé par doudache Voir le message
    Le plus simple je pense est de faire une intégration par parties.
    Oui je connais cette méthode mais j'aimerais connaitre la stratégie par différentiation paramétrique

    Sinon comment montre-t-on la convergence pour x>-1 et la divergence pour x<-1 ?

  4. #4
    invite6f25a1fe

    Re : une propriété de la fonction Gamma

    Citation Envoyé par The Artist Voir le message
    Oui je connais cette méthode mais j'aimerais connaitre la stratégie par différentiation paramétrique

    Sinon comment montre-t-on la convergence pour x>-1 et la divergence pour x<-1 ?
    est Cpm sur . En 0, tu as que donc d'intégrale convergente sur ]0,1] si et seulement si 1-x<1, donc pour x>0 (la fonction gamma est bien définie pour x>0, pas pour x>-1, enfin, il me semble...). Il te suffit de faire (a peu près) la même chose en +oo.
    Sinon, pour la propriété de la fonction gamma, je ne sais le faire que par Ipp, donc pour pour la différentiation paramétrique, je ne peux pas t'aider.

  5. A voir en vidéo sur Futura
  6. #5
    invitec9750284

    Re : une propriété de la fonction Gamma

    Merci pour la réponse !
    Mais que veut dire "une fonction Cpm"?

  7. #6
    invitee1f11e55

    Re : une propriété de la fonction Gamma

    Citation Envoyé par The Artist Voir le message
    Merci pour la réponse !
    Mais que veut dire "une fonction Cpm"?
    Continue par morceaux je pense.

  8. #7
    invite6f25a1fe

    Re : une propriété de la fonction Gamma

    oui, désolé, j'aurais dû écrire en toute lettre. Cpm=Continue par Morceau.

  9. #8
    invite8b04eba7

    Re : une propriété de la fonction Gamma

    Citation Envoyé par The Artist Voir le message
    Oui je connais cette méthode mais j'aimerais connaitre la stratégie par différentiation paramétrique
    Alors peut-etre que tu peux faire un changement de variable dans I (u = at) pour faire sortir le a et ensuite deriver. Je pense qu'en calculant ainsi de deux facons la derivee de I tu auras ton egalite.

Discussions similaires

  1. Fonction Gamma d'Euler
    Par invite5e5dd00d dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 07/03/2008, 10h44
  2. INtégrale et fonction Gamma d'Euler
    Par invite92876ef2 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 06/10/2007, 09h45
  3. derivee fonction gamma
    Par invitee98002ab dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 04/07/2007, 15h52
  4. fonction gamma
    Par invitec3f4db3a dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 08/12/2006, 18h04
  5. f(x) = x! (factorielle et fonction gamma)
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 33
    Dernier message: 19/05/2005, 09h10