Répondre à la discussion
Page 1 sur 3 12 DernièreDernière
Affichage des résultats 1 à 30 sur 74

Démonstration de l'equation E=mc2



  1. #1
    dockers4

    Démonstration de l'equation E=mc2

    bonjour a tous, je veux savoir la démonstartion de l'equation E=mc2 si il est possible merci

    -----


  2. Publicité
  3. #2
    dockers4

    Re : Démonstration de l'equation E=mc2

    aide moi s'il vous plait !!!!!!!!!

  4. #3
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par dockers4 Voir le message
    aide moi s'il vous plait !!!!!!!!!
    Bonjour,

    Soit pas si pressé, tu as posté tes deux messages en pleine nuit (tu es peut-être canadien ?)

    Démontrer ça, ça ne se fait pas en deux lignes.

    Tu as toute une discussion sur E=mc² dans http://fr.wikipedia.org/wiki/E%3Dmc%C2%B2

    Pour la relativité restreinte (indispensable pour comprendre) il y a : http://fr.wikipedia.org/wiki/Relativit%C3%A9_restreinte et dans cet article une "démonstration" (très sommaire) pour cette relation.

    Et quelque chose de beaucoup plus complet dans :
    http://www.edu.upmc.fr/physique/bobi.../jlb-rel-5.pdf
    Qui fait partie du cours :
    http://www.edu.upmc.fr/physique/bobin_04001/
    Niveau L3 quand même.

    Bon courrage,
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  5. #4
    mach3

    Re : Démonstration de l'equation E=mc2

    Pour démontrer cela il suffit d'intégrer la force (relativiste) par rapport à la distance parcourue depuis un état de repos jusqu'à un état de vitesse donnée (je l'ai retrouvée tout seul, en partant de la démo de l'énergie cinétique en classique). On obtient l'énergie cinétique sous la forme d'une énergie à la vitesse donnée moins une énergie à vitesse nulle, mc².

    c'est ce qui est fait dans ce lien de deedee : http://www.edu.upmc.fr/physique/bobi.../jlb-rel-5.pdf mais je n'aime pas du tout car ils utilisent la masse relativiste. La mode est plus à considérer une masse invariante multipliée par le facteur gamma.

    Tu peux aussi la trouver ici : http://www.sciences.ch/htmlfr/cosmol...uivmassenergie
    mais c'est aussi en masse relativiste vs masse au repos.

    Je n'ai pas le temps tout de suite, mais j'essaierai de te poster une belle démo d'ici ce soir.

    m@ch3
    Never feed the troll after midnight!

  6. #5
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Bonjour,

    Citation Envoyé par mach3 Voir le message
    mais je n'aime pas du tout car ils utilisent la masse relativiste. La mode est plus à considérer une masse invariante multipliée par le facteur gamma.
    Je préfère aussi. J'ai un bouquin chez moi (Relativité Restreinte de Vladlimir Ougarov, je crois qu'il est devenu introuvable) dans lequel il y a une "démonstration" bien foutue mais hélas il utilise aussi la masse relativiste.

    Mais ce n'est pas dramatique, il suffit d'ajouter le gamma

    Citation Envoyé par mach3 Voir le message
    il suffit d'intégrer la force (relativiste)
    Ce n'est pas si trivial, du moins si on veut être rigoureux car il faut d'abord trouver l'expression de la force relativiste. Ce n'est pas si compliqué, bien sûr, mais il ne faut pas l'oublier et le justifier. Dans le bouquin précité c'est les deux tiers de la démo ! Je suppose que la démo que tu vas poster (si tu as le temps, t'es drôlement courageux ) en tient compte.
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  7. A voir en vidéo sur Futura
  8. #6
    Gwyddon

    Re : Démonstration de l'equation E=mc2

    Il y a une manière de "démontrer" cette formule plus "simplement" (bon ok s'pas super rigoureux, mais très physique). Je l'ai fait dans mon TIPE, ça consiste à construire le 4-vecteur impulsion, et d'identifier la partie temporelle comme étant une énergie. Tu tombes alors sur la relation fondamentale

    E2- p2c2 = m2c4 et pour p=0, ça donne bien E=mc2
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  9. Publicité
  10. #7
    mach3

    Re : Démonstration de l'equation E=mc2

    Ce n'est pas si trivial, du moins si on veut être rigoureux car il faut d'abord trouver l'expression de la force relativiste. Ce n'est pas si compliqué, bien sûr, mais il ne faut pas l'oublier et le justifier.
    oui, c'est le point important, la force relativiste étant la dérivée par rapport au temps de la quantité de mouvement relativiste

    mais on peut s'en sortir sans écrire l'expression de la force en partant de ceci



    m@ch3
    Never feed the troll after midnight!

  11. #8
    gatsu

    Re : Démonstration de l'equation E=mc2

    On peut aussi le trouver en partant de l'action d'une particule libre en RR personnelement c'est comme ça que je retiens le mieux la démonstration (j'utilise aussi le truc de Gwyddon quand j'ai pas le temps de faire de beaux calculs ).
    Pour la démo utilisant la force relativiste je n'arrive bizarrement jamais à retenir correctement l'expression du quadri-veteur force, en particulier parce qu'il faut effectivement justifier la tête qu'on donne à cette force relativiste comme l'a dit Deedee 81.

  12. #9
    mach3

    Re : Démonstration de l'equation E=mc2

    Donc on considère une masse m, initialement au repos qui, par l'intermédiaire d'une force atteint un état de vitesse v. On va considérer que la force s'applique colinéairement à la vitesse v.

    La force F est définie par:

    , avec

    L'énergie acquise par la masse m de l'état initiale de repos à l'état final est égale au travail de la force:



    on a , d'où:





    On peut montrer que , donc :







    On a donc , qui se trouve après quelques lignes de calcul être

    et E(0), l'énergie au repos CQFD

    Qu'en pensez vous?

    m@ch3
    Never feed the troll after midnight!

  13. #10
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par mach3 Voir le message
    Qu'en pensez vous?
    Impec, mais :

    Citation Envoyé par mach3 Voir le message
    avec
    Comment justifies-tu ça "facilement" ?

    Moi je dirais :
    impulsion "covariante" : p = m dx/dtau
    mais la vitesse c'est v = dx/dt
    donc p = mv dt/dtau = mv gamma

    Qu'en penses-tu ?
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  14. #11
    Gwyddon

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Deedee81 Voir le message
    Impec, mais :



    Comment justifies-tu ça "facilement" ?

    Moi je dirais :
    impulsion "covariante" : p = m dx/dtau
    mais la vitesse c'est v = dx/dt
    donc p = mv dt/dtau = mv gamma

    Qu'en penses-tu ?
    J'en pense que c'est tout à fait correct

    C'est comme ça que ça tombe d'ailleurs en passant par ma démo
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  15. #12
    mach3

    Re : Démonstration de l'equation E=mc2

    Comment justifies-tu ça "facilement" ?
    ben en fait je prenais ça pour un prérequis...

    De ce que j'avais compris, la quantité de mouvement est construite de façon à se conserver lors de collisions élastiques. En classique c'est mv et en relativité ça devient , mv ne se conservant plus.

    J'ai d'ailleurs eu beaucoup de mal à comprendre d'où venait , et en étudiant des collisions élastiques j'ai constaté que ça marchait. Est-ce que ça ça se démontre clairement? je serais intéressé.

    m@ch3
    Never feed the troll after midnight!

  16. Publicité
  17. #13
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par mach3 Voir le message
    J'ai d'ailleurs eu beaucoup de mal à comprendre d'où venait , et en étudiant des collisions élastiques j'ai constaté que ça marchait. Est-ce que ça ça se démontre clairement? je serais intéressé.
    En dehors du raisonnement que j'ai donné (et dans le livre que je citais c'est ça en un peu plus élaboré), une démonstration rigoureuse basée sur la conservation, de but en blanc, euh... Avec l'invariance par translation spatiale peut-être ? Mais il faut forcément postuler autre chose.

    Un crac sait-il nous éclairer ?
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  18. #14
    Gwyddon

    Re : Démonstration de l'equation E=mc2

    Tu suis le raisonnement de Deedee
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  19. #15
    invite6754323456711
    Invité

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par mach3 Voir le message
    Donc on considère une masse m, initialement au repos qui, par l'intermédiaire d'une force atteint un état de vitesse v. On va considérer que la force s'applique colinéairement à la vitesse v.

    La force F est définie par:

    , avec

    L'énergie acquise par la masse m de l'état initiale de repos à l'état final est égale au travail de la force:



    on a , d'où:
    J'avais vue une autre démarche dans le calcul de l'intégrale qui permet d'arriver assez rapidement à l'énergie cinétique relativiste :








    L'intégrale au final donne




    Patrick

  20. #16
    dockers4

    Re : Démonstration de l'equation E=mc2

    j'ai pas bien compris pourquoi P=gamma.m.V ???

  21. #17
    b@z66

    Re : Démonstration de l'equation E=mc2

    Personellement, vos démonstrations me laissent assez froid. Je suis d'accord sur les écarts "relatitifs" d'énergie calculés (deltaE) mais j'ai quand même du mal à comprendre comment vous en déduisez une valeur "absolue" de l'énergie au repos. Comment déduisez vous E(0) à partir de:
    deltaE=E(v)-E(0), en considérant que seul deltaE a été calculé et que E(v) n'est pas connu? J'ai déjà vu cette démo pas mal de fois mais il faut reconnaitre qu'elle opère un tour de passe-passe assez énorme.
    La curiosité est un très beau défaut.

  22. #18
    juliendusud

    Re : Démonstration de l'equation E=mc2

    Démonstration par l'absurde :

    supposons que E ne soit pas égal à mc2, mais alors, mais alors ... ?

  23. Publicité
  24. #19
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Bonjour,

    Citation Envoyé par dockers4 Voir le message
    j'ai pas bien compris pourquoi P=gamma.m.V ???
    J'ai expliqué plus haut.

    Le quadrivecteur impulsion est m * le quadrivecteur vitesse. La partie tridimensionnelle vaut donc dx/dtau (x = vecteur position, tau temps propre). Tandis que la vitesse ordinaire c'est dx/dt. Etc....

    Et on vérifie, bien sûr, que pour v<< on retrouve bien l'impulsion ordinaire.

    Citation Envoyé par b@z66 Voir le message
    Personellement, vos démonstrations me laissent assez froid. Je suis d'accord sur les écarts "relatitifs" d'énergie calculés (deltaE) mais j'ai quand même du mal à comprendre comment vous en déduisez une valeur "absolue" de l'énergie au repos. Comment déduisez vous E(0) à partir de:
    deltaE=E(v)-E(0), en considérant que seul deltaE a été calculé et que E(v) n'est pas connu? J'ai déjà vu cette démo pas mal de fois mais il faut reconnaitre qu'elle opère un tour de passe-passe assez énorme.
    Bonne remarque

    Dans "Relativité Restreinte" de Vladimir Ougarov, après tout le développement il pose la même question. Et il montre qu'un choix "d'origine" différent pour l'énergie implique que l'impulsion n'est plus identique (pour v<<) à l'impulsion ordinaire. Si on veut donc que l'énergie et l'mpulsion relativiste soient la généralisation relativiste des grandeurs classiques, on n'a pas le choix. Mais je ne sais plus comment il le montre et je n'ai pas le bouquin sous la main.

    Je regarderai ce soit au cas où personne n'aurait répondu d'ici là.
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  25. #20
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Deedee81 Voir le message
    Et il montre qu'un choix "d'origine" différent pour l'énergie implique que l'impulsion n'est plus identique (pour v<<) à l'impulsion ordinaire.
    Ben oui, c'est évident, "biesse" que je suis .

    L'énergie c'est la quatrième composante du quadrivecteur (énergie-)impulsion. On doit donc le modifier pour avoir E(0)=0 et toujours un quadrivecteur.

    Je laisse baz66 vérifier ou... attendre demain (je suis trop fainénant pour refaire les calculs, je regarderai ce soir ).
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  26. #21
    invite6754323456711
    Invité

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Deedee81 Voir le message
    Bonjour,
    J'ai expliqué plus haut.

    Le quadrivecteur impulsion est m * le quadrivecteur vitesse. La partie tridimensionnelle vaut donc dx/dtau (x = vecteur position, tau temps propre). Tandis que la vitesse ordinaire c'est dx/dt. Etc....

    Et on vérifie, bien sûr, que pour v<< on retrouve bien l'impulsion ordinaire.
    Ce n'était pas si évident que cela à comprendre sans avoir connaissance du film depuis le début.

    La quantité de mouvement non relativiste n'est pas conversé lors d'une transformation de Lorentz.

    Il faut donc modifier la définition de la quantité de mouvement pour la rendre relativiste afin qu'elle se conserve dans toutes les collisions. Cette nouvelle quantité de mouvement relativiste doit tendre vers la valeur classique pour de petite vitesse par rapport à c.

    Dans l'espace de Minkowski la distance qui sépare deux évènements est un invariant. Le carré de cet intervalle est le produit pseudo-scalaire du 4-vecteur qui relie les deux évènements par lui-même.

    Le 4-vecteur distance est covariant.

    Si on divise ses quatre composantes par l'invariant qu'est le temps propre, on a encore un 4-vecteur (vitesse) covariant

    Sachant que nous avons alors

    noté 4-vecteur vitesse :

    Soit maintenant m0 la masse propre de la particule (masse au repos) qui est un attribut de la particule et donc indépendant de l'état cinématique de celle-ci. Si on multiplié les quatre composantes de par m0, celles-ci restent covariantes. Nous obtenons ainsi un nouveau 4-vecteur ayant les dimensions d'une quantité de mouvement :



    Patrick

  27. #22
    invite6754323456711
    Invité

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par ù100fil Voir le message

    Le 4-vecteur distance est covariant.

    Patrick
    erratum Le 4-vecteur distance est covariant

  28. #23
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Bonjour,

    Citation Envoyé par ù100fil Voir le message
    Il faut donc modifier la définition de la quantité de mouvement pour la rendre relativiste afin qu'elle se conserve dans toutes les collisions.
    Impec.

    Concernant la valeur de l'énergie définie à une constante près, après vérification, c'est exactement ce que je disais : si on modifie E(0) le quadrivecteur impulsion ne correspond plus (pour les petites vitesses) à l'impulsion classique (dans le bouquin de V.Ougarov il le montre sur un changement de repère).

    D'une manière générale, dans ce bouquin il procède en gros comme discuté dans ce fil. Si ce n'est qu'il commence par des justifications physiques basées sur les lois de conservation de l'énergie et de l'impulsion. C'est un peu plus verbeux.

    D'une manière peut-être plus informelle, on pourrait dire que : principe de relativité => invariance aux translations spatio-temporelles => existence d'un quadrivecteur P conservé (Noether) qui s'identifie au vecteur impulsion classique et à l'énergie pour la quatrième composante => etc... (tes développements, ceux de mach3,...)

    Je laisse dockers4 faire la synthèse de ce fil un peu embrouillé J'espère qu'il s'y retrouvera.
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  29. #24
    mach3

    Re : Démonstration de l'equation E=mc2

    existence d'un quadrivecteur P conservé (Noether)
    alala, qu'est ce qu'elle était géniale cette Emmy Noether. Quand j'ai découvert l'existence de son théorème, ça m'a sidéré...

    m@ch3
    Never feed the troll after midnight!

  30. Publicité
  31. #25
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par mach3 Voir le message
    alala, qu'est ce qu'elle était géniale cette Emmy Noether. Quand j'ai découvert l'existence de son théorème, ça m'a sidéré...
    On est deux

    Ca et les champs de jauge sont ce qui m'a donné des étoiles dans les yeux (parmis les centaines de choses qui m'ont émerveillé en physique théorique)
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  32. #26
    Tropique

    Re : Démonstration de l'equation E=mc2

    Le sujet revient régulièrement. Il n'est pas nécéssaire de faire appel à l'artillerie lourde: Maxwell suffit largement, par le biais de la pression de radiation.
    Pour cette démonstration et qques autres, voir dans le lien ici:
    http://forums.futura-sciences.com/post1063362-17.html
    A+
    Pas de complexes: je suis comme toi. Juste mieux.

  33. #27
    Gwyddon

    Re : Démonstration de l'equation E=mc2

    Non tu dis des bêtises Tropique, la relation E=mc2 n'a rien à voir avec l'électromagnétisme et est typiquement relativiste, tu confonds avec E=pc qui effectivement peut se voir en EM via la pression de radiation.
    Dernière modification par Gwyddon ; 20/02/2008 à 09h50.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  34. #28
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Tropique Voir le message
    Le sujet revient régulièrement. Il n'est pas nécéssaire de faire appel à l'artillerie lourde: Maxwell suffit largement, par le biais de la pression de radiation.
    Bonjour,

    Pour un amateur, Maxwell c'est aussi de l'artillere lourde

    Ceci dit, merci pour le lien, sympa toutes ces dérivations. Ca fera sans doute plaisir à docker.

    Mais j'ai une question : la dérivation avec la pression de radiation c'est E=pc pour les photons. Comment en déduis-tu E=mc² ????
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  35. #29
    Tropique

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Deedee81 Voir le message

    Mais j'ai une question : la dérivation avec la pression de radiation c'est E=pc pour les photons.
    Maxwell ne connaissait pas les photons; cependant il existe bien dans son cadre une définition de la pression de radiation:
    f= 1/c*dE/dt
    C'est la force exercée sur un objet absorbant ou émettant un flux d'ondes.
    On peut choisir de l'exprimer en termes de quantité de mouvement:
    dp= 1/c*dE
    Nous nous intéréssons à la variation de masse associée à l'émission ou l'absorption des ondes, or p vaut également m*v, ou m*c dans le cas qui nous occupe.
    dm*c= 1/c*dE
    Et donc, E=mc².
    Bon, d'accord, écrit par moi ça a l'air lourdingue, mais ça fait des années que je suis rangé des bécanes. Je l'ai vu écrit de façon beaucoup plus élégante et convaincante par des gens sérieux, mais fondamentalement, c'est ça: rien qui sort du 19éme siècle. Et ce n'est vraiment pas compliqué.
    A+
    Pas de complexes: je suis comme toi. Juste mieux.

  36. #30
    Deedee81

    Re : Démonstration de l'equation E=mc2

    Citation Envoyé par Tropique Voir le message
    Maxwell ne connaissait pas les photons; cependant il existe bien dans son cadre une définition de la pression de radiation: [...]
    Oui, ça, no problemos, d'ailleurs on le voit directement à partir du vecteur de Poynting et de là l'expression de l'énergie et de l'impulsion du champ EM.

    Citation Envoyé par Tropique Voir le message
    p vaut également m*v, ou m*c dans le cas qui nous occupe.
    dm*c= 1/c*dE
    Et donc, E=mc².
    Pas con

    Ceci dit, j'aurais quand même deux objections. Comment justifier que p=mc est bien valable dans le cas relativiste et les "ennuis" suivant :
    - le fait que cette formule s'applique ici aux photons et non aux particules massives
    - ce n'est pas la formule E=mc² "au repos"
    - m ? Les photons n'ont pas de masse propre. Il s'agit donc de la vieille masse relativiste. Risque de confusion.
    Bien évidemment, les trois problèmes forment un tout (par exemple, p=mc est faux pour la masse propre et un objet massif)

    Donc, je ne présenterais pas ce genre de déduction à un amateur !

    Par contre la déduction E=pc dans le lien, elle est pas mal du tout
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

Sur le même thème :

Page 1 sur 3 12 DernièreDernière

Discussions similaires

  1. E=mc2
    Par marzo dans le forum Physique
    Réponses: 85
    Dernier message: 28/07/2016, 07h28
  2. Réponses: 13
    Dernier message: 04/12/2008, 15h07
  3. E=mc2
    Par Rammstein43 dans le forum Physique
    Réponses: 7
    Dernier message: 29/07/2007, 01h43
  4. E=mc2
    Par bernardrougier dans le forum Les énigmes du temps
    Réponses: 1
    Dernier message: 20/10/2006, 11h10
  5. E=mc2
    Par terz2 dans le forum Physique
    Réponses: 21
    Dernier message: 04/03/2006, 19h11