La réponse "Il me semble que oui" concernait la question "Si il était immuable il serait absolu non ?".
Important à préciser, je crois.
S'interrogeait sur la notion d'espace. Laisser une trace pour y revenir, mais cette trace semble se diviser en deux car chacun étant considéré comme au repos (le mouvement inertiel est comme rien).
Patrick
Le temps (et l'espace) individuels seraient donc bien des phénomènes, puisque il seraient la forme sous laquelle nous apparaît la matrice illisible de toutes les relations entre tous les évènements de la liste, lorsque cette matrice est en quelque sorte "diagonalisée" par une trajectoire, c-à-d par un groupe d'évènements infiniment voisins...
En l'absence d'observateur, qui fait une construction mentale ?J'ai un peu de mal à faire la jonction entre ces deux idées!
Soit l'observateur a un repère lié à lui, et le repère existe physiquement (au sens de phénomène), ou celui-ci n'est qu'une construction mentale et on voit mal comment l'observateur pourrait dire qu'elle lui est liée.
Cela rejoint d'ailleurs mon interrogation ci-dessus.
Perso, j'aime mieux cette représentation. Mais la question du fil concerne le temps, et j'essaie donc de faire valoir l'idée que la distinction (si elle est faite) est appuyée dès le départ sur l'évènement "observation".Il me semble que la notion de trajectoire (courbe paramétré en l'occurrence le temps propre pour les particules de masse non nulle) permet de préserver la notion d'espace-temps sans devoir la décomposer en une partie d'espace et une partie de temps. Cela permet de définir la particule dans sa totalité spatio-temporelle, à savoir une ligne d'univers.
J'entends bien, mais ma difficulté est d'accorder quelque réalité à cette ligne, alors que pour l'instant je n'ai ni tableau (à part une collection abstraite d'évènements, je ne vois pas ce qu'est l'univers) ni craie (bâton permettant de laisser des traces indélébiles sur ledit tableau, traces dont on vient de dire qu'elles ne peuvent pas exister)
BonsoirJe pense que vous voulez parler du temps du physicien, rien d'étonnant car en fait le temps du physicien est une spatialisation du temps réel. Pour pouvoir utiliser le temps réel qui réside dans l'immédiateté et dans rien d'autre, il faut le spatialiser et donc aussi le dénaturer.
La durée est le temps du physicien, celui aussi des philosophes du sentiment et de l'imagination. La durée est la spatialisation du temps (réel) et non pas l'inverse, qui consiste à dire que le temps(réel) est une spatialisation de la durée. Le temps réel est métempirique ce n'est pas, comme tel, un phénomène physique. La durée est une vue de l'esprit, figurée par le déplacement des aiguilles d'une horloge classique sur une circonférence, en effet le passé n'existe plus et l'avenir pas encore, seul l'instant présent qui est ineffable, existe. Cette vue de l'esprit sert énormément aux physiciens et à tout un chacun qui utilise quotidiennement une montre.
Ne prenez mal mon intervention, mais est ce que vous comprenez vous meme ce que vous dites?
Je ne sais pas. Pour moi il y a une sorte de séquence d'introduction des concepts qui "sonne bien", et pour moi cela "sonne mieux" de définir le "temps d'un repère" à partir du temps propre que le contraire. Mais il se peut que pour d'autres l'ordre inverse paraisse "mieux".
Pas pour moi. Les trajectoires (4D, je le rappelle : sous ma plume, c'est toujours la notion 4D) se "positionnent" les unes par rapport aux autres. L'observateur n'est qu'une trajectoire particulière. J'ai d'ailleurs l'impression qu'on oublie trop souvent que l'observateur suit (et même est) une trajectoire. Moi, observateur, suis et suit une trajectoireEt voilà, ça me reprend. Je veux dire, l’impression d’une absolutisation du système.
D’accord sur l’appréciation qu’un repère n’est pas une observable, mais selon moi, l’observation d’une trajectoire implique l’introduction consciente ou pas d’un repère, celui précisément dans lequel se trouve l’observateur.
On peut voir un "repère" comme d'abord une trajectoire (dont le temps propre) plus une orientation spatiale de "l'observateur", le repère lui-même n'étant qu'une extension à un grand environnement (éventuellement à l'infini) de cette trajectoire+orientation, extension plus ou moins arbitraire (dont une méthode plus ou moins arbitraire d "projeter" son temps propre sur le reste de l'Univers). "Observer une autre trajectoire" relativement à un repère revient en fait à décrire la relation entre deux trajectoires.
Bref, si on parle d'observateur comme notion primaire, il me semble difficile d'éviter d'accepter la notion de trajectoire comme primaire !
[Note : "être dans un repère" est une expression que je trouve très inappropriée, surtout si on affirme --position que je partage-- que "choisir un repère" confirme bien qu’on se trouve dans la modélisation.]
Dernière modification par Amanuensis ; 09/01/2011 à 20h32.
annulé... Fausse manip.
Cet ordre inverse n'est-il pas justement celui qui empêche ou tout au moins qui constitue la difficulté majeure pour abandonner la vision newtonienne ?
Si je comprends bien, ça me convient totalement : une trajectoire parmi d'autres.Pas pour moi. Les trajectoires (4D, je le rappelle : sous ma plume, c'est toujours la notion 4D) se "positionnent" les unes par rapport aux autres. L'observateur n'est qu'une trajectoire particulière. J'ai d'ailleurs l'impression qu'on oublie trop souvent que l'observateur suit (et même est) une trajectoire. Moi, observateur, suis et suit une trajectoire
Là, à mon avis, on voit nettement que c'est plus facile de projeter son temps propre sur le reste de l'Univers, que d'essayer d'attraper un temps général qui passerait à portée de main pour ensuite l'adapter à son cas particulier.On peut voir un "repère" comme d'abord une trajectoire (dont le temps propre) plus une orientation spatiale de "l'observateur", le repère lui-même n'étant qu'une extension à un grand environnement (éventuellement à l'infini) de cette trajectoire+orientation, extension plus ou moins arbitraire (dont une méthode plus ou moins arbitraire d "projeter" son temps propre sur le reste de l'Univers). "Observer une autre trajectoire" relativement à un repère revient en fait à décrire la relation entre deux trajectoires.
Attention, tu as dit : "décrire la relation entre deux trajectoires". Et ce qui est dit est dit.Bref, si on parle d'observateur comme notion primaire, il me semble difficile d'éviter d'accepter la notion de trajectoire comme primaire !
Je crois que tu as mille fois raison de me reprendre, on n'est jamais assez précis dans la manière dont on s'exprime.[Note : "être dans un repère" est une expression que je trouve très inappropriée, surtout si on affirme --position que je partage-- que "choisir un repère" confirme bien qu’on se trouve dans la modélisation.]
Cordiales salutations.
bonsoir!
si quelqu'un n'a pas dejà repondu le principe de l'horloge c'est le cube
de la longueur du balancier qui correspond au carré de l'amplitude de l'oscillation de ce meme balancier ou l'inverse,proportionnalité cube/carré!!!
1 seconde d'horloge correspond à 99 cm de longueur de balancier,c'est quasiment la definition du mètre!
pardonnez moi s'il y a doublon.
cordialement!
Effectivement, ne nous dispersons pas.
Donc, je reformule : "En l'absence d'observateur, qui fait l'observation ?"
Que répondre à cela?
Résumons-nous. Je suis d'accord avec Amanuensis qu'un observateur est lui-même une trajectoire, une ligne d'univers (encore que, pour être précis, si l'acte d'observation est considéré comme instantané, on se retrouve avec un bout de ligne de longueur nulle...)
Mais admettons qu'on observe un phénomène qui dure, donc lié à une autre trajectoire, pendant que nous parcourons un bout de la nôtre.
En réalité, on ne peut pas observer cette autre trajectoire, mais seulement sa projection dans un espace et un temps générés par la nôtre. Si nous ne connaissons pas la nôtre, nous ne pouvons pas interpréter ce que nous voyons...
Et la seule façon pour nous d'avoir une idée de notre trajectoire est l'inertie.
J'ai bon?
Je n'ai pas compris.si quelqu'un n'a pas dejà repondu le principe de l'horloge c'est le cube
de la longueur du balancier qui correspond au carré de l'amplitude de l'oscillation de ce meme balancier ou l'inverse,proportionnalité cube/carré!!!
1 seconde d'horloge correspond à 99 cm de longueur de balancier,c'est quasiment la definition du mètre!
pardonnez moi s'il y a doublon.
Pourriez-vous préciser?
Merci.
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
bonsoir!
en fait je me suis trompé c'est Galilé dans son livre "discours et demonstrations mathematiques concernant deux sciences nouvelles"(livre essentiel fondateur de la physique avant les principiae de Newton) qui etablit que les longueurs des cordes sont inversement proportionnelles aux carrés du nombre des oscillations accomplies dans un meme temps. ainsi pour par exemple pour obtenir un pendule dont le temps d'oscillation soit double de celui d'un autre pendule il faut donner au premier une longueur quadruple de celle du second!
amicalement!
Quand je dis la notion de trajectoire est primaire, l'adjectif porte sur notion. Cela ne parle du nombre de trajectoires.
Je n'ai pas l'impression d'un désaccord par ailleurs. Oui, un observateur est une trajectoire parmi d'autre, et oui, un repère (au sens référentiel+classes de simultanéité) consiste à mentalement projeter le temps propre d'une trajectoire particulière sur le reste de l'Univers.
Mais le voir comme cela consiste bien à partir ("primaires") des notions de trajectoires et de temps propre comme propriété de chaque trajectoire, non ?
Fabriquez une horloge en or, très dur l’or et vous croyez pour un temps, dur comme fer, que cette horloge en or que vous avez façonnée est toujours identique à elle-même, immuable, ne vieillit jamais, séquestre à tout moment la même portion d’espace ? Ah que ne voilà pas … un bel espace objectivé !Pour pouvoir utiliser le temps réel qui réside dans l'immédiateté et dans rien d'autre, il faut le spatialiser et donc aussi le dénaturer.
La durée est le temps du physicien, celui aussi des philosophes du sentiment et de l'imagination. La durée est la spatialisation du temps (réel) et non pas l'inverse, qui consiste à dire que le temps(réel) est une spatialisation de la durée. Le temps réel est métempirique ce n'est pas, comme tel, un phénomène physique. La durée est une vue de l'esprit, figurée par le déplacement des aiguilles d'une horloge classique sur une circonférence, en effet le passé n'existe plus et l'avenir pas encore, seul l'instant présent qui est ineffable, existe. Cette vue de l'esprit sert énormément aux physiciens et à tout un chacun qui utilise quotidiennement une montre.
Erreur ! A tout moment cette horloge en or que vous croyez immuable, change, évolue, ce n’est jamais la même horloge, pour en or qu’elle soit, que vous observez. Vous avez l’illusion d’avoir toujours la même horloge devant vous, illusion analogue à celle du mouvement au ciné ou à la télé.
Rien ne dure, la durée est une illusion et c’est le temps du physicien. Seul existe l’instant présent, le passé n’est plus et l’avenir pas encore.
Non ce n’est pas le temps réel qui est la spatialisation de la durée.
Oui c’est la durée qui est la spatialisation du temps réel, et c’est le temps du physicien.
Tout change, tout bouge tout le temps sauf peut-être … les lois de la Nature.
Tiens tiens bizarre comme c’est bizarre, vous avez dit bizarre ? … les lois de la Nature seraient-elles immuables ?
Bonsoir
Je veux bien admettre ce que vous affirmez.
Mais en attendant, c'est grace au temps de physiciens , comme vous dites que le monde est concevable , possible , et que les machines et la societé fonctionnent. Et grace à lui que vous pouvez reflechir à votre message et moi au mien; si bien que nous retombons dans le meme piege qui consiste à utiliser le mot "temps" pour définir le temps.
Pour reprendre une image que je trouve tres parlante, n'avez vous pas l'impression que vous tirez sur votre col de chemise en espérant vous soulever de terre?
Cordialement
Ça me va mieux.en fait je me suis trompé c'est Galilé dans son livre "discours et demonstrations mathematiques concernant deux sciences nouvelles"(livre essentiel fondateur de la physique avant les principiae de Newton) qui etablit que les longueurs des cordes sont inversement proportionnelles aux carrés du nombre des oscillations accomplies dans un meme temps. ainsi pour par exemple pour obtenir un pendule dont le temps d'oscillation soit double de celui d'un autre pendule il faut donner au premier une longueur quadruple de celle du second!
Sur terre, cela donne à peu près :
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
Ça doit probablement apparaître comme du pinaillage, mais il me semble particulièrement important que la relation entre (au moins) deux trajectoires soit écrite parce qu’à mon avis la plupart des personnes l’oublient et continuent par exemple à chercher quel pourrait être ce temps, cet espace ou cet espace-temps qui nous serait commun à tous et serait composé de trajectoires indépendantes.
Il n’y a n’en a pas, je crois, tes explications me satisfont pleinement, et notamment la phrase : « Observer une autre trajectoire relativement à un repère revient en fait à décrire la relation entre deux trajectoires » qui indique clairement qu’il s’agit d’une description, qu’elle est relative, et quels sont les objets de la relation, la trajectoire-observateur et la trajectoire-observation.Je n’ai pas l’impression d’un désaccord par ailleurs. Oui, un observateur est une trajectoire parmi d’autre, et oui, un repère (au sens référentiel+classes de simultanéité) consiste à mentalement projeter le temps propre d’une trajectoire particulière sur le reste de l’Univers.
Pas de problème pour lire sous ta plume le terme de trajectoire au singulier, je constate que dans la pratique il n’y a pas d’absolutisation de ta part, mais j’ai bien peur que ce ne soit pas une attitude franche et massive.Mais le voir comme cela consiste bien à partir ("primaires") des notions de trajectoires et de temps propre comme propriété de chaque trajectoire, non ?
Parler de "chaque" trajectoire risque de conduire certains à continuer de se représenter un observateur en lui-même ou une observation en soi.
Pas besoin d’aller très loin, d'ailleurs.
Bé non, la seule façon pour nous d’avoir une idée de notre trajectoire, c’est d’en observer une autre. Ce n'est qu'après seulement qu'on peut éventuellement parler d'inertie.
Cordiales salutations.
Si, quand même. Mais il ne s'agit pas de la "forme" de la trajectoire. Une trajectoire (4D) est absolue en terme de "ligne topologique", en tant que suite continue d'événements (ou reliant des événements) dans l'espace topologique (sans métrique, sans structure affine, juste la topologie --au sens voisinages--) qu'est le continuum espace-temps.
Elle est absolue au sens définie en elle-même, sans avoir besoin de parler de relation avec autre chose.
Elle n'a pas de forme, pas de "projection spatiale", on ne peut pas parler de "droite" non plus.
...une idée de la "forme" de notre trajectoire...Bé non, la seule façon pour nous d’avoir une idée de notre trajectoire, c’est d’en observer une autre.
OuiCe n'est qu'après seulement qu'on peut éventuellement parler d'inertie.
Pourrais-tu préciser ce que tu as en tête, et qu'Amanuensis à ma grande surprise confirme?
Je croyais que l'accéléromètre était le seul moyen d'avoir, de façon intrinsèque, une idée de notre trajectoire 4-D.
Pourriez-vous donner, l'un ou l'autre, un exemple d'expérience où l'observation d'une trajectoire extérieure nous renseigne sur la nôtre?
D'après ce que je comprends, mais je ne suis pas à l'abri du contresens, Amanuensis parle de trajectoire "en soi", il écrit ligne topologique, pour indiquer la représentation mathématique à laquelle il est fait appel avant d'introduire, dans une deuxième étape, tout ce qui permet de théoriser l'observation.
Et selon moi, c'est là, en entrant dans le domaine de la description, qu'on a besoin d'avoir obligatoirement au moins deux trajectoires, celle qui est observée et celle à partir de laquelle on (se) représente cette observation.
Il y a eu tout un débat là-dessus dans une discussion récente sur les jumeaux à laquelle tu as participé d'ailleurs, et on ne devrait peut-être pas avoir à redire toujours les mêmes choses, non ?Je croyais que l'accéléromètre était le seul moyen d'avoir, de façon intrinsèque, une idée de notre trajectoire 4-D.
Pour aller vite, je dirai qu'il me semble que l'utilisation de l'accéléromètre suppose qu'on a déjà défini un référentiel.
Cordiales salutations.Envoyé par AmanuensisL'accéléromètre indique SON accélération par rapport à un objet qui serait en chute libre au même endroit (et donc par rapport à un référentiel par rapport auquel ledit objet en chute libre est immobile).
La question de ce qu'indique l'accéléromètre n'est pas simple. (Par défaut, un accéléromètre est trois axes dans mon texte, le résultat de la mesure est un vecteur spatial relatif à un solide (la "coque").)
Dans tous les cas, il n'informe que très peu, à lui seul, sur la trajectoire (suffit de penser à toutes les trajectoires de chute libre possibles). Par exemple, connaître les indications respectives des accéléromètres pour deux trajectoires ne donne aucune information sur leurs positions relatives ni sur leurs orientations relatives, et, faute de connaître l'orientation, peu d'information même sur leur vitesse relative. Sans compter () le problème du "moment" des mesures.
Dans l'approche "machienne", la mesure de l'accéléromètre est relative, l'inertie étant un "résidu" de l'attraction gravitationnelle du reste de l'Univers.
Il me semble qu'on peut, dans un autre modèle, la voir comme "absolue", une propriété mesurable de la "ligne topologique". Je ne sais pas trop comment ça se présente en maths, la question de l'orientation n'étant pas claire. J'imagine qu'il faut rajouter des gyroscopes pour "transporter" l'orientation le long de la trajectoire et exprimer l'accélération relativement à cette orientation transportée ?
Et une horloge pour indexer la trajectoire...
Pour des mesures "locales" on peut aller plus loin. J'avais essayé dans le temps de réfléchir à ce qu'on peut tirer des mesures d'un dispositif constitué de 5 accéléromètres, un central et 4 disposés tétraèdriquement, 5 horloges colocalisées aux accéléromètres, trois gyroscopes (sagnac) près de l'accéléromètre du centre, et (éventuellement) des dispositifs de mesure de distance (aller-retour d'un laser) entre accéléromètre, le tout dans une disposition aussi rigide que possible. [Il me semble qu'il y a des sondes spatiales qui ont été lancées avec au moins une partie d'un tel dispositif.]
On peut argüer que ces mesures "locales" ne le sont pas, que ce sont des mesures relatives entre 5 trajectoires, même si elles sont très proches les unes des autres.
Même un accéléromètre classique peut être vu comme une mesure relative entre deux trajectoires, celle de la masse et celle de la coque.
.
Il me semble que je devrais retirer de mon intervention précédente, en fait celle du #84, la référence à l’idée que mon insistance sur la notion de relation entre trajectoires pourrait "apparaître comme du pinaillage" parce que la question de relativiser toujours davantage notre approche de la physique devient à mon avis un thème de plus en plus actuel dont on voit déjà qu’il occupe une place importante peut-être décisive dans la perspective d’une gravitation quantique.
Je suppose que le qualificatif "classique" accolé à "accéléromètre" signifie usuel, parce que j’espère bien que les leçons que je prends ici concernent la Relativité générale et pas la Mécanique classique.On peut argüer que ces mesures "locales" ne le sont pas, que ce sont des mesures relatives entre 5 trajectoires, même si elles sont très proches les unes des autres.
Même un accéléromètre classique peut être vu comme une mesure relative entre deux trajectoires, celle de la masse et celle de la coque.
Bon, plus sérieusement, ce n’est pas dans le sens où tu envisages cette possibilité que je tiens tout particulièrement à faire valoir l’aspect relatif de notre connaissance du système physique. La bonne "approximation" n’est pas un défaut, elle est une nécessité vitale. Mais mon souci vient du fait que tout le monde (moi y compris, bien entendu) procède à une opération primaire de représentation, et que celle-ci est aussitôt masquée par l’évidence de la perception.
Dans un de ses textes, Einstein écrit ; « Imaginons une vaste portion d’espace si éloignée des étoiles et d’autres masses importantes que nous nous trouvions avec une très grande approximation dans le cas prévu par la loi fondamentale de Galilée. Il est alors possible de choisir pour cette partie du monde un corps de référence galiléen relativement auquel (…) » etc.
Chacun sait ce que signifie le verbe imaginer, mais nous n’avons pas de problème pour suivre un tel raisonnement, cela bien que ladite "vaste portion d’espace" n’ait pris forme que dans notre cerveau, pas ailleurs. Et les lois que nous inférons de l’observation s’appliquent à ce corps de référence imaginaire. Mais alors, comment a-t-on fait ? Tout simplement, en projetant notre espace-temps particulier (chacun le sien) sur ce système fictif. Et ça marche, cette représentation est communicable, chaque physicien saura refaire les calculs alors que sa vision propre de l’Univers est (à coup sûr) différente de celle de chacun des autres.
Maintenant, il ne reste plus qu’à prendre la mesure qu’il en va strictement de même en ce qui concerne le temps des horloges (dans le sens de durée mesurable) : on n'a que la solution de construire un consensus intersubjectif.
Mais ensuite, il ne faut pas oublier que c'est nous qui l’avons construit, qu’il ne nous a pas été donné, c'est-à-dire concrètement qu’il s’agit d'une donnée relative, pour ne pas dire relationnelle.
Cordiales salutations.
Dernière modification par Les Terres Bleues ; 11/01/2011 à 11h27.
Je soutiens tout à fait le côté relationnel de la Physique.
Seulement, il me semble que si l'on veut parler exclusivement de relations, on arrive vite à une impasse, si on n'est pas en mesure de définir les objets entre lesquels ces relations existent.
Une relation implique dans sa définition au moins deux éléments, ou à la rigueur un seul dans le cas particulier d'une relation unaire.
Or la notion d'observateur, essentielle à la Physique, est déjà dans le flou. Qu'est-ce qu'un observateur? C'est avant tout une conscience, même si elle-même est en relation avec un oeil qui reçoit des photons de diverses directions. Comment parler de la ligne d'univers d'une conscience?