Bonjour,
Je suis en terminale S et j'ai besoin d'aide pour une question concernant les suites:
Soit E la partie entière.
Soit p= E(x*10^(n+1)) avec x étant un réel
De plus : p<ou= x*10^(n+1) < p+1
Soit q= E(x*10^n)
De plus : q<ou=x*10^n< q+1
On a montré que p-10q>-1
on doit en déduire le sens de variation de (un) sachant que u(n+1) - un = (E(x*10^(n+1))-10*E(x*10^n))*10^-(n+1).
Voilà, j'ai transformé cette relation; ça donne bien:
u(n+1)-un= (p - 10q)* 10^-(n+1).
Cependant, on ne peut pas avoir si un est croissante car on ne sait pas si u(n+1)-un est positif ou négatif. En effet, on a 10^-(n+1) qui est un terme positif mais (p-10q) peut être positif comme négatif comme p-10q>-1; donc quelque chose doit m'échapper. Merci de m'aider.
-----