Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

racines et équations



  1. #1
    marinanouk

    racines et équations


    ------

    bonsoir!
    je suis en 1ère S et il se trouve que je suis bloquée au milieu d'un exercice concernant les racines dans les équations du second degré. J'ai réussi la première question, trouvé un résultat à la deuxième mais je suis incapable de l'interpréter!!Voila donc l'énoncé ( je suis obligé de mettre la première question pour que vous compreniez la deuxième):
    1. Démontrer que si l'équation du second degré : ax²+bx+c=0 a deux racines distinctes, la somme S et le produit P de ces racines sont donnés par : S=-b/a et P=c/a
    2. Est-ce encore vrai pour une racine double?
    3. Soit l'équation 2x²+14x-17=0
    Sans calculer le discriminant ( et c'est là mon problème!!), montrer que cette équation a deux racines. Sans les calculer, trouver leur somme et leur produit. En déduire qu'elles sont de signes contraires.

    Voila voila ce qui m'a cassé la tête!
    Pour la question 2, je trouve que c'est vrai pour la somme mais pas pour le produit. Qu'est-ce que je dois en conclure!
    Quant à la 3...je sais que si le signe du produit est négatif cela sous'entendra que les racines sont de signes contraires mais c'est comment trouver les racines sans les calculer qui m'embête. AIDEZ-MOI PITIE!!!

    -----

  2. #2
    Jeanpaul

    Re : racines et équations

    Quand dans une équation du type a x² + b x + c = 0, a et c sont de signes contraires, alors delta est toujours positif, c'est assez facile à voir (quel est le signe de b², celui de - 4 a c ?)
    On ne te demande pas les racines, seulement leur somme et leur produit. Tu appliques simplement les résultats au-dessus.

  3. #3
    marinanouk

    Re : racines et équations

    ah d'accord!donc je me compliquais la vie!!merci beaucoup en tout cas!

  4. #4
    seb77_01

    Re : racines et équations

    Bonjour alors moi j'ai un problème sur ce même exercice c'est que je ne sias pas commen trouver P = c/a donc si vous pouviez m'expliquer Merci

  5. A voir en vidéo sur Futura
  6. #5
    JAYJAY38

    Re : racines et équations

    Citation Envoyé par marinanouk Voir le message
    bonsoir!
    je suis en 1ère S et il se trouve que je suis bloquée au milieu d'un exercice concernant les racines dans les équations du second degré. J'ai réussi la première question, trouvé un résultat à la deuxième mais je suis incapable de l'interpréter!!Voila donc l'énoncé ( je suis obligé de mettre la première question pour que vous compreniez la deuxième):
    1. Démontrer que si l'équation du second degré : ax²+bx+c=0 a deux racines distinctes, la somme S et le produit P de ces racines sont donnés par : S=-b/a et P=c/a
    2. Est-ce encore vrai pour une racine double?
    3. Soit l'équation 2x²+14x-17=0
    Sans calculer le discriminant ( et c'est là mon problème!!), montrer que cette équation a deux racines. Sans les calculer, trouver leur somme et leur produit. En déduire qu'elles sont de signes contraires.

    Voila voila ce qui m'a cassé la tête!
    Pour la question 2, je trouve que c'est vrai pour la somme mais pas pour le produit. Qu'est-ce que je dois en conclure!
    Quant à la 3...je sais que si le signe du produit est négatif cela sous'entendra que les racines sont de signes contraires mais c'est comment trouver les racines sans les calculer qui m'embête. AIDEZ-MOI PITIE!!!
    Qu'est ce que tu as fait ?
    Cordialement

  7. #6
    seb77_01

    Re : racines et équations

    ce n'est pas moi qui ai posté ce message ,moi, je n'arrive pas à demontrer que le produit des deux racines de l'équation ax²+bx+c=0 vaut P=c/a

  8. #7
    seb77_01

    Re : racines et équations

    non personne sait lol ?

  9. #8
    JAYJAY38

    Re : racines et équations

    Citation Envoyé par seb77_01 Voir le message
    ce n'est pas moi qui ai posté ce message ,moi, je n'arrive pas à demontrer que le produit des deux racines de l'équation ax²+bx+c=0 vaut P=c/a
    Si c'est simple,

    Tu sais que tu as deux racines et . Ton équation est .
    En divisant par , tu as

    Donc le produit et la somme
    Cordialement

  10. #9
    seb77_01

    Re : racines et équations

    ok merci bonne fin de journée

  11. #10
    Ketsana

    Re : racines et équations

    Bonjour
    je sais que ce sujet date depuis un petit moment mais j'ai également ce problème à une différence près c'est que x1 et x2 peuvent être égaux. Du coût j'ai du mal à calculer S et P. D'ailleurs JAYJAY38 a marqué ax²+bx+c = (x-x1) (x-x2) où est passé le a ? Ce n'est pas normalement égale à a (x-x1) (x-x2) (si les deux racines sont distinctes)?
    S'il vous plaït, pouvez-vous m'éclaircir un peu cela ?

  12. #11
    Jeanpaul

    Re : racines et équations

    Il y a bien un a en facteur s'il n'est pas nul. Que les 2 racines soient égales ne change rien.

  13. #12
    Ketsana

    Re : racines et équations

    D'accord merci beaucoup !

Discussions similaires

  1. racines de sin²x
    Par miketyson42 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 18/09/2007, 22h14
  2. racines carrées
    Par Cassano dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 01/09/2007, 09h58
  3. Nombre de racines
    Par kidnapped dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 14/07/2007, 00h18
  4. Polynôme et racines
    Par NathalieHi dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 24/09/2006, 14h38
  5. racines
    Par bender3590 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 24/08/2006, 22h40