Répondre à la discussion
Affichage des résultats 1 à 19 sur 19

2002 diviseurs



  1. #1
    Universmaster

    2002 diviseurs


    ------

    Bonjour,

    j'étais en train de faire deux trois exos d'arithmétiques (sur les nombres permiers essentiellement) et j'tombe sur cet exo:

    Quel est le plus petit nombre admettant 2002 diviseurs?

    On sait que le nombre de diviseurs est le produit des sommes des exposant et de un, lorsque ce nombre est décomposé en facteur premier... mais ça aide pas vraiment.
    Quelqu'un à une piste?

    Merci,

    Cordialement, Universmaster.

    -----

  2. Publicité
  3. #2
    -Zweig-

    Re : 2002 diviseurs

    Sympa ton exercice ... Je dirais que est le plus petit, mais je n'en suis pas sûr

    Je continue à chercher, je te tiens au courant.

  4. #3
    prgasp77

    Re : 2002 diviseurs

    Réponse en spoiler. Si tu cherches juste des indications, précise-le je te guiderai.

     Cliquez pour afficher
    --Yankel Scialom

  5. #4
    -Zweig-

    Re : 2002 diviseurs

    Oui voilà, c'est ce que j'avais trouvé, mais ta réponse n'est pas assez rigoureuse, car en fait, il faut que tu montres que le plus petit nombre que tu peux former est de la forme parcequ'en fait l'équation admet plusieurs solutions, avec n <= 4 (puisque )

  6. A voir en vidéo sur Futura
  7. #5
    prgasp77

    Re : 2002 diviseurs

    Zweig : Il me semble que ton nombre n'admet que 30 diviseurs, à savoir toute puissance de 2 inférieure ou égale à 229 (1 compris).
    Concernant ton dernier message : tu as raison; Mais il s'agit d'une réponse et non d'une démo, qui est LAL.
    Dernière modification par prgasp77 ; 17/11/2007 à 16h05. Motif: messages croisés.
    --Yankel Scialom

  8. #6
    -Zweig-

    Re : 2002 diviseurs

    Bah non :

    On a bien (1+1)(6+1)(10+1)(12+1) = 2002

    EDIT : Ok ça ne marche pas je pense car ce sont les même nombres premiers ...
    Dernière modification par -Zweig- ; 17/11/2007 à 16h11.

  9. Publicité
  10. #7
    Universmaster

    Re : 2002 diviseurs

    J'ai pas regardé la rep, j'voulais simplement des pistes

    parce que appart le fait que , j'vois pas d'autre infos

  11. #8
    prgasp77

    Re : 2002 diviseurs

    There is the key :
    Tout entier n ayant pour décomposition en facteur premier admet strictement diviseurs (y compris 1 et lui même).
    Le mieux serait de le démontrer, ainsi que sa réciproque.
    God luck.
    --Yankel Scialom

  12. #9
    Universmaster

    Re : 2002 diviseurs

    Oui je suis d'accord, mais de cette propriété on en déduit seulement que:




    Ou y a-t-il autre chose?

  13. #10
    Antho07

    Re : 2002 diviseurs

    Citation Envoyé par Universmaster Voir le message
    Oui je suis d'accord, mais de cette propriété on en déduit seulement que:




    Ou y a-t-il autre chose?
    décompose 2002 en facteurs premiers

  14. #11
    Universmaster

    Re : 2002 diviseurs


    Donc
    "Dieu ne joue pas aux dés" [Albert Einstein]

  15. #12
    Universmaster

    Re : 2002 diviseurs

    Dois-je en déduire que ça donne:



    Ok, ce nombre admettra 2002 diviseurs, mais sera-t-il le plus petit? Il faut le démontrer (car sinon il y avait plus simple: )
    Dernière modification par Universmaster ; 17/11/2007 à 19h22. Motif: LaTeX
    "Dieu ne joue pas aux dés" [Albert Einstein]

  16. Publicité
  17. #13
    -Zweig-

    Re : 2002 diviseurs

    mais aussi 2002 = (1+1)(1000+1) = (13 + 1)(142 + 1) = etc ...

  18. #14
    Universmaster

    Re : 2002 diviseurs

    Lol ouais, comment savoir lequel est le plus petit? ou le démontrer que y'en a un plus petit? (Parce que en essayant toutes les possibilités on est pas arrivé :s)
    "Dieu ne joue pas aux dés" [Albert Einstein]

  19. #15
    MiMoiMolette

    Re : 2002 diviseurs

    Tu sais que ces puissances doivent être affectées à des nombres premiers.

    Donc mets les plus grandes puissances sur les plus petits nombres premiers et ainsi de suite =)
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  20. #16
    Universmaster

    Re : 2002 diviseurs

    Ouais ça me semble pas bête, mais ça sera bien rigoureux?
    "Dieu ne joue pas aux dés" [Albert Einstein]

  21. #17
    MiMoiMolette

    Re : 2002 diviseurs

    Le problème dans ce genre de choses, c'est justement si une démonstration est rigoureuse ou pas. J'ignore ce que tu entends par là. Quand je parle du caractère rigoureux d'une démonstration, je pense au fait qu'on utilise des formules, des théorèmes et non une simple intuition.
    Or, elle est parfois inévitable (ou bien on est trop nuls pour voir la démonstration rigoureuse ). Et là, c'est de la logique, quant à le démontrer...Ce serait chercher midi à 14h
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  22. #18
    Universmaster

    Re : 2002 diviseurs

    lol, justement ce n'est pas rigoureux quand on pense que c'est logique. On pense que c'est une évidence, mais reste à la démontrer. Donc je ne sais pas s'il y a un moyen de le démontrer (par logique ou avec théorème, axiome, propriétés etc..) ou si c'est suffisant comme ça ^^
    "Dieu ne joue pas aux dés" [Albert Einstein]

  23. Publicité
  24. #19
    prgasp77

    Re : 2002 diviseurs

    Citation Envoyé par prgasp77 Voir le message
    Tout entier n ayant pour décomposition en facteur premier admet strictement diviseurs (y compris 1 et lui même).
    Bonjour.
    L'idée est réellement de démontrer l'assertion ci-dessus, ainsi que sa réciproque (qui est vraie). Une fois cela fait, il ne reste plus qu'à trouver la répartition des puissances qui donnent le plus petit nombre (le démontrer, voire le laisser au lecteur )

    Courage !
    --Yankel Scialom

Discussions similaires

  1. Spé maths : diviseurs de (p^m)(q^n)
    Par gastonflingueur dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 06/10/2007, 20h39
  2. diviseurs de zéro d'un anneau
    Par denebe dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 11/06/2007, 12h47
  3. Trouvaille sur les diviseurs :)
    Par Herbiti dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 22/01/2006, 16h17
  4. Nombres premiers, diviseurs et modulo
    Par azilien dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 07/02/2005, 23h32
  5. diviseurs specialite maths
    Par tanialentellais dans le forum Mathématiques du supérieur
    Réponses: 18
    Dernier message: 23/11/2004, 15h12