Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

probabilité



  1. #1
    melissa5555

    probabilité


    ------

    SALUT


    Un même individu peut être atteint de surdité unilatérale (portant sur une seule oreille) ou bilatérale (portant sur deux oreilles).
    On admet que, dans une population donnée, les deux événements :
    D : « être atteint de surdité à l’oreille droite »
    G : « être atteint de surdité à l’oreille gauche »
    Sont indépendants et tous les deux de probabilité 0.05.
    On considère les événements suivants :
    B : « être atteint de surdité bilatérale »;
    U : « être atteint de surdité unilatérale » ;
    S : « être atteint de surdité (sur une oreille au moins) ».
    On donnera les valeurs numériques des probabilités demandées sous forme décimale approchée a 10-4 près.
    1°)a) Calculer p(D∩G) et en déduire p(D∩Gbarre ), p(Dbarre ∩G) et p(Dbarre ∩Gbarre ).
    b) Vérifier l’indépendance des événements D et Gbarre , Dbarre et G , Dbarre et Gbarre.
    c) Calculer p(B), p(S) et p(U).
    2°) On suppose qu’un sujet pris au hasard dans la population considérée est atteint de surdité. Quelle est la probabilité :
    a) qu’il soit atteint de surdité à droite ?
    b) qu’il soit atteint de surdité bilatérale ?
    3°) Calculer p(D∩U), puis p(D∩Ubarre ). En déduire pu(D) ainsi que pubarre(D).
    4°) Calculer la probabilité que, sur 10 personnes de cette population prises au hasard, au moins l’un d’entre elles soit atteint de surdité bilatérale.

    Je n'arrive même pas la question 1

    merci de votre aide

    -----

  2. Publicité
  3. #2
    MiMoiMolette

    Re : probabilité

    Yop,

    Si deux événements A et B sont indépendants,
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  4. #3
    melissa5555

    Re : probabilité

    Merci, mais je n'arrive pas à faire ensuite p(D∩Gbarre ) parce qu'on ne sait pas encore que D et Gbarre sont indépendant donc on ne peut pas appliquer cette formule ...

  5. #4
    MiMoiMolette

    Re : probabilité

    Sisi,

    Si D et G indépendants, il est logique que D et G barre soient indépendants ^^
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  6. #5
    melissa5555

    Re : probabilité

    Ah d'accord merci, mais alors pour la question b) comment faudrait-il faire ?

  7. A voir en vidéo sur Futura
  8. #6
    MiMoiMolette

    Re : probabilité

    Arf, ok, j'avais pas lu...

    Pour la q° 1 c'est autrement qu'il faut calculer alors

    Pour la q° b, montre que tu as P(D & G barre) obtenu q° a est égal à P(D)*P(G barre)
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  9. Publicité
  10. #7
    melissa5555

    Re : probabilité

    lol
    Donc c'est pour ça que je bloquais à la question 1)

  11. #8
    MiMoiMolette

    Re : probabilité

    En faisant un schéma avec des patates (une patate D, une patate G qui se coupent en un certain espace, le tout dans une patate E qui représente l'univers), on peut trouver, mais je ne sais pas si c'est réellement ce qu'on te demande :/
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

Sur le même thème :

Discussions similaires

  1. Probabilité
    Par Ekinoks2 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 17/05/2007, 12h28
  2. Probabilité
    Par DIABLOAMG dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 15/05/2007, 21h50
  3. probabilité
    Par nada42 dans le forum Mathématiques du collège et du lycée
    Réponses: 0
    Dernier message: 05/05/2007, 15h32
  4. probabilité...
    Par enigman dans le forum Science ludique : la science en s'amusant
    Réponses: 11
    Dernier message: 15/01/2007, 13h36
  5. probabilité ...
    Par jeremy Q dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 05/11/2006, 09h14