limites trigo
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

limites trigo



  1. #1
    invited613354d

    limites trigo


    ------

    Bonjour, comment je peux m'y prendre pour déterminer les limites de x+cosx sur R ? En (Pi/2) pas de souci mais en l'infini ?
    Je sais que cosx est compris entre -1 et 1, je dois utiliser un encadrement ? Peut on m'expliquer ? Merci

    -----

  2. #2
    invited613354d

    Re : limites trigo

    Je me doute qu'en -l'inf f tend vers -l'inf et en +l'inf f tend vers +l'inf

  3. #3
    invitea3eb043e

    Re : limites trigo

    Ben oui, un encadrement. En +infini, la fonction est supérieure à ... et en -infini elle est inférieure à ...

  4. #4
    invited613354d

    Re : limites trigo

    C'était une question bête! Je m'était embrouillé!

  5. A voir en vidéo sur Futura
  6. #5
    invited613354d

    Re : limites trigo

    Autre question : comment je peux montrer que les solutions de sinx -(x/2)=0 appartiennent à l'intervalle [-2;2] ?

  7. #6
    invitea3eb043e

    Re : limites trigo

    Le plus simple est d'étudier la fonction sin(x) - x/2 et calculer finement tous les maximums/minimums locaux.
    La fonction étant impaire tu peux te limiter à x>=0

  8. #7
    invite35452583

    Re : limites trigo

    Je pense qu'il y a plus simple :
    sin(x) est majoré en valeur absolue par ?
    x/2 est minoré en valeur absolue par ? quand x est en dehors de [-2;2].
    Conclusion...

  9. #8
    invitea3eb043e

    Re : limites trigo

    Oui, bien vu. Après tout on ne demande pas de situer les racines.

  10. #9
    invited613354d

    Re : limites trigo

    J'ai passé pas mal de temps à essayer de comprendre le principe avec les valeurs absolues mais je ne saisi pas!
    Je rappelle que je dois montrer que les solutions de sinx-(x/2)=0 appartiennent à l'intervalle [-2;2] ?
    Vous pouvez m'expliquer avec plus de détails ?

  11. #10
    invitea3eb043e

    Re : limites trigo

    Comme sin(x) = x/2 et que sin(x) est compris entre -1 et 1, alors x/2 est compris entre -1 et +1 donc x est compris entre -2 et +2. Rien de bien sorcier.

Discussions similaires

  1. Trigo
    Par invitec8ebd43a dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 10/02/2008, 19h36
  2. Trigo
    Par invitee063c30d dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 27/01/2008, 22h58
  3. Trigo
    Par invited19ac2e6 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 12/09/2006, 20h42
  4. défi des limites ou limites des défis???
    Par invite9d57a1e0 dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 23/09/2005, 10h50
  5. trigo
    Par invite9578a63f dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 12/10/2004, 21h36