Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Suites - 1S-



  1. #1
    pipicos

    Suites - 1S-

    Bonsoir
    A la veille d'un devoir de mathématique je tombe sur un petit exercice simple en apparence mais dont je n'arrive pas à trouver de solution : Le voici

    Soit (Un) la suite définie par
    U0 = 1
    U(n+1) = (Un) / (Un + 1) (n supérieur à 0)

    On me demande de calculer les premiers termes de la suite (Un) puis de faire une conjecture liant Un et n puis de la démontrer

    Je calcule :
    U0 = 1
    U1 = 1/2
    U2 = 1/3
    U3 = 1/4
    U4 = 1/5
    ...
    La relation que l'on déduit entre Un et n est donc :
    Un = 1 / (n+1)

    En tentant de démontrer pourquoi, je ne réussis pas ...
    Et c'est pour cela que je solicite votre aide ...
    Merci d'avoir pris le temps de me lire

    -----

    Dernière modification par pipicos ; 05/05/2008 à 19h32.

  2. Publicité
  3. #2
    ALEX15000

    Re : Suites - 1S-

    Ta conjecture est bonne. tu peux peut être penser à faire une récurrence....
    "J'adore violer votre virginité intellectuelle..."

  4. #3
    pipicos

    Re : Suites - 1S-

    je me doute bien qu'elle est bonne puisqu'elle marche.
    En fait je crois que le probléme que j'ai se pose au niveau du calcul (que je ne trouve pas évident)
    Je sais qu'il faut que je parte de U(n+1) (le Un de ma conjecture bien sur) et que j'arrive à quelquechose sous la forme
    [1/(1/n)]/[1 + (1/(1+n))] ... :s

  5. #4
    ALEX15000

    Re : Suites - 1S-

    Par récurrence:
    Pour n=1. OK
    Donc on suppose que Un=1/(1+n) jusqu'à un certain rang N.
    On calcul:
    U(n+1) = Un/1+Un = (1/(1+n))/(1+1/(1+n)) = 1/[(n+1)+1] CQFD
    Dernière modification par ALEX15000 ; 05/05/2008 à 19h49.
    "J'adore violer votre virginité intellectuelle..."

  6. #5
    pipicos

    Re : Suites - 1S-

    désolé d'insister mais ...pourquoi ce résultat était t il satisfaisant?
    Est ce que c'est parcequ'on a pu écrire Un+1 en fonction de n ?

  7. A voir en vidéo sur Futura
  8. #6
    ALEX15000

    Re : Suites - 1S-

    tu as déja vu les raisonnement par récurrence non??
    ET en fait on a réussi a montrer que ca "marchait" aussi pour n+1.
    En effet on a bien montrer que U(n+1)=1/(n+1)+1. On l'a montré au rang suivant...
    "J'adore violer votre virginité intellectuelle..."

  9. Publicité
  10. #7
    pipicos

    Re : Suites - 1S-

    Oui .... oui c'est bon c'est bon j'ai compriss
    Encore merciiii

  11. #8
    nadi38

    Smile Re : Suites - 1S-

    slt a tous, j'ai un Dm a faire pour demain et j'ai du mal a repondre a deux questions qui sont les suivantes:
    V est une suite definie par V0=V1=1 et pour tout entier naturel n, Vn+2=Vn+1+Vn. On admet que pour tout n, Vn et plus grand ke 0.
    a)calculer V2 et V3.
    b) on pose Wn=Vn+1/Vn, pour tout n: calculer W0 et W1.

    merci d'avance et de repondre le plus rapidement possible.

Sur le même thème :

Discussions similaires

  1. Suites
    Par Celestion dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 23/12/2007, 15h43
  2. Suites.
    Par Poussiquette89 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 12/11/2007, 01h05
  3. Encore des Suites, toujours des suites...
    Par Famous-BiBi dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 26/09/2006, 16h50
  4. suites
    Par bbdoll dans le forum Mathématiques du supérieur
    Réponses: 35
    Dernier message: 25/02/2006, 17h41
  5. Suites
    Par Rifly01 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 15/02/2006, 09h26