Equa diff
Répondre à la discussion
Affichage des résultats 1 à 16 sur 16

Equa diff



  1. #1
    invitefe14ddea

    Equa diff


    ------

    Salut à tous
    Quelqu'un pourait m'aider à résoudre cette equation differentielle et merci d'avance

    dv(t)/dt+av2(t)=0

    -----

  2. #2
    invite88ef51f0

    Re : equa diff

    Salut,
    Connais-tu la méthode par séparation de variables ?

  3. #3
    invitec317278e

    Re : equa diff

    Pose la fonction g(t)=1/v(t)

  4. #4
    invitefe14ddea

    Re : equa diff

    Merci pour vos réponses je vais essayer cette méthode.
    Par contre pourriez vous me montrer la méthode par séparation de variables et merci encore.

  5. A voir en vidéo sur Futura
  6. #5
    invite3a7286a1

    Re : equa diff

    Par séparation des variables: (la fonction nulle est clairement solution)
    dv(t)/dt+av²(t)=0
    dv(t)/dt=-av²(t)
    -dv(t)/v²(t)=adt
    Puis en intégrant de chaque coté
    1/v(t)=a*t + cst
    Donc v(t)=1/(a*t) + cste

  7. #6
    invitefe14ddea

    Re : equa diff

    Merci Alex 15000 pour ta réponse

  8. #7
    invite3a7286a1

    Re : equa diff

    Vérifie quand même que tu trouve la même solution avec la méthode de Thorin...
    EDIT:Ca marche également pour sa méthode..
    Mais alors juste une question pourquoi poser g(t)=1/v(t)???

  9. #8
    invitec317278e

    Re : Equa diff

    Mais alors juste une question pourquoi poser g(t)=1/v(t)???
    comment ça "pourquoi" ?



    NB : petite remarque, dans les 2 cas, on divise par v(t)...sans savoir si elle s'annule ou pas.

  10. #9
    invite3a7286a1

    Re : Equa diff

    Ben comment avoir l'idée de poser cette fonction??

  11. #10
    invitec317278e

    Re : Equa diff

    Si on divise notre équation par v², on reconnait la dérivée de -1/v, ça peut mettre la puce à l'oreille ;p

    Enfin, les idées, en maths, si on cherche absolument à savoir comment les avoir...on a pas fini

  12. #11
    invitefe14ddea

    Re : Equa diff

    Salut.
    Avec la méthode de THORIN et celle de ALEX 15000 je ne trouve pas le meme résultat.

    Excuse moi THORIN si je te dérange mais est-ce que tu peux m'expliciter ta méthode

  13. #12
    invitec317278e

    Re : Equa diff

    posant g=1/v, on a v=1/g
    v'=-g'/g²

    d'où en remplaçant :

    -g'/g²+a/g²=0
    on multiplie par g²

    g'=a
    g=at+constante
    v=1/g=1/(at+constante)

    NB : quand ALEX a écrit "Donc v(t)=1/(a*t) + cste", il a fait une erreur de parenthésage par rapport à sa pénultième ligne, je pense.

  14. #13
    invitefe14ddea

    Re : Equa diff

    Oui voila c,est ce que je pense.

  15. #14
    invite3a7286a1

    Re : Equa diff

    Non non c'était pas une erreru c'est juste que c'était une autre constante...
    Dsl si c'était pas expliqué...

  16. #15
    invitebfd92313

    Re : Equa diff

    pour poser g=1/v il faut que v ne s'annule pas (par exemple la fonction nulle est solution m'est n'est pas de la forme indiquée par thorin)

  17. #16
    invitec317278e

    Re : Equa diff

    Effectivement, mais j'avais la flemme de traiter ce cas hier.
    Allons-y :

    D'une part, on remarque que av² est de signe constant, donc v' est monotone.
    Ainsi, si v s'annule plus d'une fois, elle est nulle entre ces points.

    supposons que la fonction n'est pas nulle sur R.
    Prenant un intervalle ouvert à gauche tel que la fonction ne s'annule pas dessus, mais que la borne gauche b soit un point d'annulation, alors, sur cet intervalle, v(t)=1/(at+constante).
    Cependant, on veut une fonction continue (en effet, l'équation de départ, a priori, est définie partout, donc la fonction est dérivable en tout point, donc continue en tout point), donc, il faut que (lim de v(t) quand t tend vers b)= 0

    Or, on vérifie facilement que quelque soit la valeur de la constante, cette limite ne sera pas satisfaite.

    ainsi, il n'existe pas de fonction non identiquement nulle s'annulant au moins une fois.

Discussions similaires

  1. Equa diff
    Par inviteee20e3bc dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 24/01/2007, 20h04
  2. Equa diff 2nd ordre ==>sys equa diff 1er ordre
    Par invite9a2a0be4 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 20/03/2006, 13h55
  3. équa diff
    Par invitee7bbd53a dans le forum Mathématiques du supérieur
    Réponses: 17
    Dernier message: 16/03/2006, 12h22
  4. Equa diff y''=a/y²
    Par Gilgamesh dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 09/02/2006, 13h13
  5. equa diff
    Par invite00c17237 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 23/04/2004, 16h18