Résolution des systèmes d'équations
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

Résolution des systèmes d'équations



  1. #1
    invitebadbdb9f

    Unhappy Résolution des systèmes d'équations


    ------

    Bonjour,
    J'ai un exercice de maths que je n'arrive pas à résoudre:
    C'est assez basique, mais n'ayant pas su aller au cours je n'ai pas vu cette partie.

    Soit f(x)=ax²+bx+c, déterminer les réels a et b si on sait que
    f(1)=0 ; f(2)=5 et f(-1)=-4

    Merci par avance de votre aide

    -----

  2. #2
    invite890931c6

    Re : Résolution des systèmes d'équations

    En faite, il faut que tu traduises les informations que tu as sous forme de système, puis le résoudre.

    Par exemple ta première information f(1) = 0

    donne la première équation de ton système a + b +c = 0
    fais de même pour les 2 autres.

  3. #3
    invite57a1e779

    Re : Résolution des systèmes d'équations

    Citation Envoyé par zubrowka Voir le message
    Bonjour,
    J'ai un exercice de maths que je n'arrive pas à résoudre:
    C'est assez basique, mais n'ayant pas su aller au cours je n'ai pas vu cette partie.

    Soit f(x)=ax²+bx+c, déterminer les réels a et b si on sait que
    f(1)=0 ; f(2)=5 et f(-1)=-4

    Merci par avance de votre aide
    Tes conditions conduisent immédiatement au système .

    En soustrayant la première équation aux deux autres, tu obtiens un système très simple à résoudre.

  4. #4
    invitebadbdb9f

    Re : Résolution des systèmes d'équations

    Ok, un grand merci à vous 2.
    Je résous l'exercice puis je met la solution pour être sur

  5. A voir en vidéo sur Futura
  6. #5
    invitebadbdb9f

    Re : Résolution des systèmes d'équations

    Voila ce que j'ai:

    1 1 1 | 0
    4 2 1 | 5
    1 -1 1 | -4

    Donc je fais

    L1 -> -4*L1
    L2 -> L1+L2

    -4 -4 -4 | 0
    0 -2 -3 | 5
    1 -1 1 | -4

    L3 -> 4*L3
    L3 -> L1+L3

    -4 -4 -4 | 0
    0 -2 -3 | 5
    0 -8 0 | -4

    Donc normalement ici je dois supprimer le -8?

    ce qui me donne une ligne 0 0 0 = -4
    Donc cela veut il dire que c'est impossible?

  7. #6
    invite890931c6

    Re : Résolution des systèmes d'équations

    tu peux reformuler tout ça un peu plus clairement stp...

    Suis l'indication d God's Breath, additionne la première et la deuxième équation de ton système.

  8. #7
    invitebadbdb9f

    Re : Résolution des systèmes d'équations

    Désolé,

    Donc voila après la soustraction:
    -----------------------------------
    f(2): 3a + b + c = 5
    f(-1): -2b = -4

    Ensuite je défini la valeur de B:
    --------------------------------
    f(2): 3a + b + c = 5
    f(-1) b = 2

    Je replace B par 2 et je calcule A:
    -----------------------------------
    f(2): 3a + 2 + c = 5
    f(2): c = 3-3a
    f(2): 3a + 5 -3a = 5

    Donc ici tout se simplifie? J'espère ne pas m'être égaré.
    Merci.

  9. #8
    invite57a1e779

    Re : Résolution des systèmes d'équations

    Je proposai de soustraire la première équation aux deux autres, de façon à obtenir



    qui se résout en cascade en partant du bas...

  10. #9
    invite890931c6

    Re : Résolution des systèmes d'équations

    oui je viens de m'en rendre compte milles excuses.

  11. #10
    invitebadbdb9f

    Re : Résolution des systèmes d'équations

    Je me suis trompé dans ma précédente réponse

    Donc voila après la soustraction:
    -----------------------------------
    f(2): 3a + b = 5
    f(-1): -2b = -4

    Ensuite je défini la valeur de B:
    --------------------------------
    f(2): 3a + b = 5
    f(-1) b = 2

    Je replace B par 2 et je calcule A:
    -----------------------------------
    f(2): 3a + 2 = 5
    f(2): 3a = 3
    f(2): a= 1

    f(2): 3 + b = 5
    f(2): b = 3

    Est ce correcte?

  12. #11
    invite57a1e779

    Re : Résolution des systèmes d'équations

    Il est curieux que tu trouves d'abord b = 2, puis b = 3, mais que tu ne trouves jamais c...

Discussions similaires

  1. systèmes d'équations
    Par invite41768754 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 15/12/2008, 23h14
  2. Systèmes d'équations
    Par invite3f84fc6c dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 29/08/2008, 21h27
  3. Déterminant des systèmes d'équations
    Par invitefe699b1a dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 12/03/2008, 21h45
  4. systèmes d'équations
    Par invite2f9c0627 dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 06/11/2007, 22h02
  5. methode de resolution des systemes d'inéquations
    Par invite288cd860 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 07/10/2007, 16h59