Etude d'une fonction avec ln
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Etude d'une fonction avec ln



  1. #1
    invite54f15488

    Question Etude d'une fonction avec ln


    ------

    Bonjour à tous.

    J'aurais besoin de votre aide pour déterminer le signe d'une dérivée.

    J'ai f(x) = -x/2 + ln ((x-1)/x)
    f est définie sur ]-infini ; 0[ U ]1; +infini[

    Je dois trouver le sens de variation de f, j'ai donc calculé sa dérivée :
    f'(x) = -1/2 + 1/(x(x-1))

    Et à partir de là, je sais que je dois trouver le signe de la dérivée en fonction de x, mais je n'arrive pas à aller plus loin que :
    -1/2 + 1/(x(x-1)) > 0 <=> 1/(x(x-1)) > -1/2

    Merci d'avance pour tous vos conseils !

    -----

  2. #2
    invitea3eb043e

    Re : Etude d'une fonction avec ln

    Citation Envoyé par klem69 Voir le message
    -1/2 + 1/(x(x-1)) > 0 <=> 1/(x(x-1)) > -1/2
    T'étais bien parti, là, pourquoi n'as-tu pas effectué cette somme ? De manière générale, les seules inégalités faciles à traiter ce sont celles où il y a zéro d'un côté.

  3. #3
    invite54f15488

    Re : Etude d'une fonction avec ln

    D'accord, j'ai calculé f'(x) et j'obtiens :
    f'(x) = (-x^2 + x + 2)/ (2x(x-1))
    Je calcule séparément les valeurs qui annulent le numérateur et le dénominateur, et je fais mon tableau de signe.

    Pour le numérateur je trouve 2 racines : -1 et 2
    -x^2 + x + 2 est négatif sur ]-1 ; 2[ et positif sur ]-infini ; -1 [ U ] 2; +infini[

    Pour le dénominateur je trouve 0 et 1, 2x ( x-1) est donc négatif sur ]0;1[ et positif sur le reste.

    Par contre après quand j'arrive à la ligne de f', je dois mettre une double barre entre 0 et 1 pour montrer que ces deux valeurs sont impossibles ? (car elles annulent le dénominateur) ?

    Je tombe finalement sur :
    f'(x) < 0 sur ]-infini ; -1[ U ]2 ; +infini[ et f'(x) > 0 sur ]-1 ; 0[ U ] 1; 2[

    C'est ça ?

  4. #4
    invitea3eb043e

    Re : Etude d'une fonction avec ln

    Oui c'est bon pour ce calcul, mais tu as oublié un point important : quand la fonction est-elle définie ?

  5. A voir en vidéo sur Futura
  6. #5
    invite54f15488

    Re : Etude d'une fonction avec ln

    Elle n'est pas définie pour sur ]0 ; 1[, donc je mets 2 doubles barres dans mon tableau ? (pour 0 et 1)

  7. #6
    invitea3eb043e

    Re : Etude d'une fonction avec ln

    Citation Envoyé par klem69 Voir le message
    Elle n'est pas définie pour sur ]0 ; 1[, donc je mets 2 doubles barres dans mon tableau ? (pour 0 et 1)
    Non, tu barres toute cette zone.

  8. #7
    invite54f15488

    Re : Etude d'une fonction avec ln

    D'accord, merci

  9. #8
    invite54f15488

    Re : Etude d'une fonction avec ln

    J'ai eu 18 au DM

  10. #9
    invitea3eb043e

    Re : Etude d'une fonction avec ln

    Citation Envoyé par klem69 Voir le message
    J'ai eu 18 au DM
    C'est fort bien, n'oublie pas de retenir les méthodes générales employées, ça peut resservir.

Discussions similaires

  1. Etude d'une fonction ???
    Par invite18dbadb9 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 07/01/2009, 23h01
  2. Etude d'une fonction et d'une suite
    Par invite62696a75 dans le forum Mathématiques du collège et du lycée
    Réponses: 15
    Dernier message: 22/12/2008, 21h33
  3. Etude d'une fonction
    Par invite7ac151ce dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 02/10/2008, 02h50
  4. Etude d'une fonction C
    Par invite625f5854 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 04/01/2008, 18h59
  5. [TS] Etude d'une fonction avec des logarithmes
    Par invite9611804b dans le forum Mathématiques du supérieur
    Réponses: 35
    Dernier message: 23/12/2005, 12h18