fonction
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

fonction



  1. #1
    invite138158e1

    fonction


    ------

    Bonjour voial je dois repondre au questions suivantes mais je ne coprends pas trop pouvez vous m'aider svp?
    f(x)=lnx-(1/lnx)
    On se propose de chercher les tangentes à la courbe (C) passant par le point 0
    a) Soit a un réel appartenant à l'intervalle ]1;+infini[ . Démontrer que la tangente Ta à (C) au point d'abscisse a passe par l'origine du repére si et seulement si f(a)-af '(a)=0

    Soit g la fonction définie sur l'intervalle °1;+inf[ par g(x)=f(x)-xf '(x)
    b)Montrer que sur ce intervalle (ln x)^3- (lnx)²-lnx=0 ont les memes solutions

    la courbe C est représenté par la fonction f(x)
    merci

    -----

  2. #2
    invite3a7286a1

    Re : fonction

    Tu as déja commencé?? Tu as fais quoi?? C'est a quoi que tu bloques?

  3. #3
    invite138158e1

    Re : fonction

    ben j'ai essayé de faire mais j'y arrive pas .
    Je sais comment que pour calculer une tangente on fait f'(a)(x-a)+f(a) mais je n'arrive pas a trouver ce qu'on cherche

  4. #4
    invite3a7286a1

    Re : fonction

    Ben tu as finis la première question alors... Ce que tu donnes c'est l'équation de la tangente au point d'absisse a. Dans l'énoncé ils veulent que cette droite passe par l'origine donc le point de coordonnées (0;0).. Tu n'as plus qu'à traduire cela...

  5. A voir en vidéo sur Futura
  6. #5
    invite7bfc68ef

    Talking Re : fonction

    Citation Envoyé par aurore_ Voir le message
    Bonjour voial je dois repondre au questions suivantes mais je ne coprends pas trop pouvez vous m'aider svp?
    f(x)=lnx-(1/lnx)
    On se propose de chercher les tangentes à la courbe (C) passant par le point 0
    a) Soit a un réel appartenant à l'intervalle ]1;+infini[ . Démontrer que la tangente Ta à (C) au point d'abscisse a passe par l'origine du repére si et seulement si f(a)-af '(a)=0

    Soit g la fonction définie sur l'intervalle °1;+inf[ par g(x)=f(x)-xf '(x)
    b)Montrer que sur ce intervalle (ln x)^3- (lnx)²-lnx=0 ont les memes solutions

    la courbe C est représenté par la fonction f(x)
    merci
    bonjour à tous ; alors elle en est où cette dérivée?
    hé aussi regarde bien ton énoncé : c'est (lnx)^3-(lnx)²-lnx-1=0 il manquait -1

Discussions similaires

  1. Fonction racine carrée et fonction cube
    Par invite1d9a0420 dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 15/10/2008, 16h43
  2. besoin d'aide étude de fonction (2 petite fonction)
    Par invite97f0a0d8 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 07/09/2008, 19h40
  3. comparaison fonction exponentielle et fonction carrée
    Par invite52461d16 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 26/02/2008, 20h27
  4. Passage fonction définie en paramétrique à fonction implicite ?
    Par invite9e01212f dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 27/03/2007, 23h38
  5. Fonction réciproque d'une fonction composée ??
    Par invite39b6d083 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 06/10/2006, 23h33