Congruence TS
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Congruence TS



  1. #1
    Jon83

    Congruence TS


    ------

    Bonjour!

    Si 3x=8(mod 10), comment prouver que x=6(mod 10)?

    En multipliant par 7, j'ai 21x=56(mod 10) soit 21x=6(mod 10) mais je ne vois pas la suite???

    -----

  2. #2
    invite5150dbce

    Re : Congruence TS

    tu veux montrer 3x=8(mod 10) ==> x=6(mod 10)
    Alors montre la contraposée
    si x=1(mod 10), 3x=3(mod 10)
    si x=2(mod 10), 3x=6(mod 10)
    si x=3(mod 10), 3x=9(mod 10)
    si x=4(mod 10), 3x=2(mod 10)
    si x=5(mod 10), 3x=5(mod 10)
    si x=7(mod 10), 3x=1(mod 10)
    si x=8(mod 10), 3x=4(mod 10)
    si x=9(mod 10), 3x=7(mod 10)

  3. #3
    Jon83

    Re : Congruence TS

    Merci pour ta réponse!
    Je dois prouver l'équivalence 3x=8(mod 10) <==> x=6(mod 10).
    pour x=6(mod 10) => 3x=8(mod 10) pas de problème.
    C'est l'inverse que je ne vois pas: comment 3x=8(mod 10) => x=6(mod 10)??

  4. #4
    invite5150dbce

    Re : Congruence TS

    Bah je te l'ai marqué en prouvant que si x n'est pas congru à 6, alors 3x n'est pas congru à 8 (modulo 10)

  5. A voir en vidéo sur Futura
  6. #5
    Jon83

    Re : Congruence TS

    OK! je n'avais pas compris.....
    Dans mon bouquin, à partir de 3x=8(mod 10), en multipliant par 7, on a 21x=6(mod 10) et là je ne vois pas comment on peut conclure x=6(mod 10)

  7. #6
    invite5150dbce

    Re : Congruence TS

    C'est assez spécial comme méthode, il faut y penser.
    21x=6[10]
    <=>10|(21x-6)
    <=>10|3(7x-2)
    Or comme 3 est premier et 10 n'est pas un multiple de 3, 10 et 3 sont premiers entre eux donc d'après le théorème de gauss, 10|(7x-2)
    <=>7x=2[10]
    Or 3x=8=-2[10]
    Donc -6x=4[10]
    Par addition x=7x-6x=2+4=6[7]

  8. #7
    Jon83

    Re : Congruence TS

    Bravo! Mais tu as raison: c'est tiré par les cheveux!!!!
    NB: c'est l'exo 4.31 du livre d'Arithmétique de Joachim LLORCA (édition Ellipses)

    Merci pour ton aide!

  9. #8
    invite5150dbce

    Re : Congruence TS

    De rien
    Si tu as d'autres question, n'hésites pas à poster sur le forum

  10. #9
    Flyingsquirrel

    Re : Congruence TS

    Citation Envoyé par Jon83 Voir le message
    Dans mon bouquin, à partir de 3x=8(mod 10), en multipliant par 7, on a 21x=6(mod 10) et là je ne vois pas comment on peut conclure x=6(mod 10)
    7 est l'inverse de 3 modulo 10 car . Par conséquent , d'où la conclusion. En gros il ne font que simplifier par 3 (modulo 10), ce n'est pas si tiré par les cheveux que cela.

  11. #10
    invite5150dbce

    Re : Congruence TS

    Citation Envoyé par Flyingsquirrel Voir le message
    7 est l'inverse de 3 modulo 10 car . Par conséquent , d'où la conclusion. En gros il ne font que simplifier par 3 (modulo 10), ce n'est pas si tiré par les cheveux que cela.
    Bien vu, ta méthode est beaucoup plus rapide

Discussions similaires

  1. congruence
    Par invite48b7a4f0 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 13/10/2008, 19h39
  2. congruence
    Par invite994a24a2 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 08/11/2007, 13h47
  3. congruence
    Par invite994a24a2 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 07/11/2007, 18h18
  4. Congruence !
    Par invitedf60503e dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 11/10/2007, 09h49
  5. congruence
    Par invitea89b71bb dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 08/11/2004, 16h46