Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Division Euclidienne TS




  1. #1
    Jon83

    Division Euclidienne TS

    Bonjour!

    soient a et b deux entiers positifs. Trouver a et b sachant que a<4000 et que la division euclidienne de a par b donne un quotient de 82 et un reste de 47.

    Donc: a=82b+47 et a<4000
    Mais je n'arrive pas à aller plus loin...Merci pour votre aide!

    -----


  2. Publicité
  3. #2
    Jeanpaul

    Re : Division Euclidienne TS

    Si le reste est de 47, qu'est-ce qu'on peut dire de b ?

  4. #3
    Jon83

    Re : Division Euclidienne TS

    on peut dire que 47<b


  5. #4
    Jon83

    Re : Division Euclidienne TS

    donc b>=48; si j'essaie b=48, je trouve a=3983<4000;
    si j'essaie b=49, je trouve a=4065>4000 contraire à l'hypothèse
    Donc la seule solution est a=3983 et b=48.
    Mais cette résolution ne me satisfait pas car on procède par tâtonnement, et on a de la chance de tomber rapidement sur la solution. N'y a t-il pas une solution plus rigoureuse?

  6. #5
    zanz

    Re : Division Euclidienne TS

    non il n'y a pas de façon plus rigoureuse c'est pourquoi ton prof a bien choisi la valeur 4000. En fait tu as une equation avec 2 parametre ce qui te donne une finité de possibilité, la contrainte te permet de reduire un peu mais c'est tout c'est forcement du tatonnement.

  7. A voir en vidéo sur Futura
  8. #6
    Jon83

    Re : Division Euclidienne TS

    OK, merci pour ton aide!

  9. #7
    ansset

    Re : Division Euclidienne TS

    tu peux aussi proposer ça :
    après avoir minoré b, tu peux le maximiser en partant de a.

    4000 = 4100 -100
    =50*82 -82 -12
    =49*82 -12

    donc 47<b<49 et b=48

  10. Publicité
  11. #8
    Jeanpaul

    Re : Division Euclidienne TS

    Citation Envoyé par Jon83 Voir le message
    Mais cette résolution ne me satisfait pas car on procède par tâtonnement, et on a de la chance de tomber rapidement sur la solution. N'y a t-il pas une solution plus rigoureuse?
    Le tâtonnement est une activité parfaitement honorable en mathématiques, surtout quand il s'appuie sur des calculs rigoureux.

Sur le même thème :

Discussions similaires

  1. Division Euclidienne
    Par miss-jumbi dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 23/11/2009, 18h19
  2. Division euclidienne
    Par Lanaaa dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 22/11/2008, 15h39
  3. Division euclidienne
    Par antagonus49 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 01/12/2007, 13h43
  4. division euclidienne
    Par basket58 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 24/11/2007, 18h20
  5. Division euclidienne
    Par Calia dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 13/10/2005, 18h13