Problème spé maths arithmétique
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Problème spé maths arithmétique



  1. #1
    invite5796f66b

    Problème spé maths arithmétique


    ------

    Bonjour, j'ai un problème à faire pour la rentrée, et j'ai vraiment du mal avec l'arithmétique..

    On se propose d'effectuer la division euclidienne de 3n+2 par n+3, où n désigne un nombre entier naturel.

    a) Pourquoi le quotient ne peut-il pas être supérieur ou égal à 3?
    b) Lorsque n≥4, démontrer que le quotient est 2 et que le reste est n-4
    c) Etudier le cas où 0≤n≤3.

    Pour la a)
    3n+2 = (n+3)*q+r
    3n+2 = qn+3q+r
    3n-qn = 3q+r-2
    n(3-q) = 3q+r-2

    je pense que j'y suis presque mais je n'arrive pas à aller plus loin ...

    j'ai aussi tenté la b) mais je n'arrive pas à trouver que q=2 er r=n-4

    Merci

    -----

  2. #2
    invitedb5bdc8a

    Re : Problème spé maths arithmétique

    si q>3 ton terme de gauche est négatif.

  3. #3
    invite5796f66b

    Re : Problème spé maths arithmétique

    Mais le terme de droite est positif ?

  4. #4
    invitedb5bdc8a

    Re : Problème spé maths arithmétique

    oui et donc tu as q ...

  5. A voir en vidéo sur Futura
  6. #5
    invite5796f66b

    Re : Problème spé maths arithmétique

    Je ne comprends pas pourquoi le terme de droite est positif...

    q < 3

  7. #6
    gg0
    Animateur Mathématiques

    Re : Problème spé maths arithmétique

    Heu .. l'hypothèse implicite est "q est supérieur à 3".

    J'ai l'impression que tu t'es lancé dans des calculs sans commencer une preuve de ce qui t'est demandé. Donc reprenons :
    " Pourquoi le quotient ne peut-il pas être supérieur ou égal à 3?"
    Quelle procédé penses-tu utiliser pour prouver cela ? Pi_r2 en a un en tête, lui.

    Une fois le procédé choisi, on fera les calculs en conséquence. Mais ta phrase à prouver n'est pas un calcul.

    Cordialement

  8. #7
    invite5796f66b

    Re : Problème spé maths arithmétique

    Je ne comprends vraiment pas ... pourquoi l'hypothèse est q>3 alors qu'on doit démontrer que q>3? Je ne comprends pas d'où il faut partir et que veut dire une preuve de ce qui m'est demandé...

  9. #8
    invitedb5bdc8a

    Re : Problème spé maths arithmétique

    Citation Envoyé par Cne0 Voir le message
    Je ne comprends pas pourquoi le terme de droite est positif...

    q < 3
    parce que tu as écrit une division euclidienne pour des entiers positifs (naturels) et donc q et r existent et sont positifs, et en plus r<n+3 par définition de la division euclidienne.
    tu peux te débarrasser facilement du cas q= 0 ...

  10. #9
    invite5796f66b

    Re : Problème spé maths arithmétique

    D'accord, donc q est forcément inférieur à 3

Discussions similaires

  1. Arithmétique, spé maths Ts
    Par inviteb57fcaf3 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 20/12/2011, 11h41
  2. Des exercices de Spé maths arithmétique tres sympatique; les passionés des maths devraient regarder!
    Par invite9bee8a5e dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 01/03/2011, 22h37
  3. Spé maths arithmétique
    Par invitec6946ef0 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 03/10/2009, 21h44
  4. Exo Maths Ts arithmétique
    Par invitefe34e79f dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 19/09/2009, 20h21
  5. Probleme Spé Maths :arithmetique
    Par inviteaffd5bf4 dans le forum Mathématiques du collège et du lycée
    Réponses: 16
    Dernier message: 02/10/2007, 16h50