calcul de la derivée d'une integrale
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

calcul de la derivée d'une integrale



  1. #1
    invite93279690

    calcul de la derivée d'une integrale


    ------

    bonjour existe-t-il une methode rigoureuse mathematiquement pour calculer la quantité :



    ou est une densité volumique quelconque dependant à prioris de tous les parametres possibles (on se restreint ici aux parametres de l'espace et de temps).

    Cela fait un bout de temps que je reflechis au probleme et je ne trouve pas du tout si quelqu'un pouvait m'aider....

    merci d'avance

    -----

  2. #2
    invitea3eb043e

    Re : calcul de la derivée d'une integrale

    Toute la question est de savoir si le volume où on calcule l'intégrale change avec le temps. Si ce n'est pas le cas, on peut dériver sous le signe somme.

  3. #3
    invite93279690

    Re : calcul de la derivée d'une integrale

    je pense que tu auras deviné que ce calcul sert pour la loi de conservation (de masse , charge , quantité de matiere etc..) je pense qu'il faut donc considerer que le volume varie en fonction du temps ...comment je m'y prends dans ce cas là mathematiquement (sans essayer de faire appel mon intuition en physique en fait)?

    merci

  4. #4
    invitea3eb043e

    Re : calcul de la derivée d'une integrale

    Tu verrais mieux si tu commençais modestement par une intégrale simple, en introduisant une masse linéïque lambda :
    m = somme(x1(t) à x2(t)) (lamda(x,t) dx)
    qu'on peut décomposer en somme x1 à 0 et somme 0 à x2
    Ca rejoint un peu l'intuition que la variation de masse est la somme de la variation due au changement de masse linéïque + celle due au changement de frontières.

  5. A voir en vidéo sur Futura
  6. #5
    invite00411460

    Re : calcul de la derivée d'une integrale

    D/Dt intégrale_de_volume rho dV = intégrale_de_volume d/dt rho dV + intégrale_fermée_de_surface rho*n*u*dS

    si je me trompe pas c'est ça :

    D/DT est une dérivée entière
    d/dt est une dérivée partielle
    la surface est la surface englobant le volume
    n est le vecteur normal à la surface
    u est le vecteur vitesse du fluide

  7. #6
    invite00411460

    Re : calcul de la derivée d'une integrale

    ça c'est si tu considères le volume comme fixe et le système ouvert
    ya une autre "formule" pour un volume se déformant et un système ouvert (je crois qu'il faut juste prendre u comme la vitesse du fluide par rapport à la paroi, relative quoi)

    une brève recherche sur "dérivée matérielle" ou encore "loi de conservation, systèmes ouverts" devrait t'aider

  8. #7
    invite93279690

    Re : calcul de la derivée d'une integrale

    merci pour vos conseils
    en cherchant un peu plus de maniere approfondie en utilisant certains mots clefs recommandés par olle j'ai pu trouver ce site sur lequel on trouve le calcul ,notamment, de la derivation particulaire d'une integrale de volume (sans passer par un raisonnement physique) si ça interresse quelqu'un....

    http://meca.insa-rouen.fr/~souza/mmc...itre4.html#4.1

Discussions similaires

  1. Calcul d'une dérivée
    Par invite75ae3b25 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 16/10/2007, 22h13
  2. calcul d'une intégrale d'une fonction de bessel
    Par invite963647d9 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/09/2007, 13h31
  3. Dérivée d'une intégrale bornée par une fonction
    Par invite3e5ede0a dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 06/07/2007, 16h36
  4. Passage d'une dérivée classique à une dérivée partielle dans une intégrale
    Par Seirios dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 18/04/2007, 18h49
  5. Dérivée d'une intégrale
    Par invite53a5bd61 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 07/05/2006, 20h46