Injection / surjection / bijection
Répondre à la discussion
Affichage des résultats 1 à 16 sur 16

Injection / surjection / bijection



  1. #1
    invite4c8f7e37

    Injection / surjection / bijection


    ------

    salut,

    pouvez vous m'aider faire cet exo que j'ai eu en colle s'il vous plait ?!

    Soit E et F deux ensembles

    Soit tel que soit bijective.

    Montrer que et sont bijectives.
    ---------------------------------------------------------------------------------------------------------
    on montre que f est injective puis surjective :

    soit (x,y) appartenant à

    ==> f(x) = f(y) ==> g(f(x)) = g(f(y)) ==> (gof)(x) = (gof)(y) ==> x = y car gof bijective donc f injective.

    Mais je n'arrive pas à montrer que f est surjective. Merci de m'aider.

    -----

  2. #2
    invitec053041c

    Re : Injection / surjection / bijection

    Salut.

    Traduis la surjectivité de fogof, ça va aller tout seul.

  3. #3
    invite4c8f7e37

    Re : Injection / surjection / bijection

    Soit y appartenant à F

    il exite x appartenant à E / y = (gof)(x)

    après ?

  4. #4
    invitec053041c

    Re : Injection / surjection / bijection

    Citation Envoyé par fusionfroide Voir le message
    Soit y appartenant à F

    il exite x appartenant à E / y = (gof)(x)

    après ?
    Je t'ai dit la surjectivité de fogof et non gof.

  5. A voir en vidéo sur Futura
  6. #5
    invite4c8f7e37

    Re : Injection / surjection / bijection

    est ce qu'on peut faire comme il suit :

    on a bijective donc injective et surjective.

    et bijective donc f surjective
    et bijective donc f est surjective

    Donc f est bijective.

  7. #6
    invitec053041c

    Re : Injection / surjection / bijection

    Citation Envoyé par fusionfroide Voir le message
    est ce qu'on peut faire comme il suit :

    on a bijective donc injective et surjective.

    et bijective donc f surjective
    et bijective donc f est surjective

    Donc f est bijective.

    D'où sors-tu que gof et fog sont bijectives ?

  8. #7
    invite4c8f7e37

    Re : Injection / surjection / bijection

    comme fogof est bijective donc fog est bijective et gof l'est aussi non ?

  9. #8
    invitec053041c

    Re : Injection / surjection / bijection

    Citation Envoyé par fusionfroide Voir le message
    comme fogof est bijective donc fog est bijective et gof l'est aussi non ?
    Cette conclusion est aussi hâtive que de dire directement que f est bijective.

    Tu étais bien parti, tu as fait l'injectivité de f, qu'attends-tu pour sa surjectivité ?
    Ne viens pas demander de l'aide si c'est pour ne pas écouter les conseils qu'on te donne...

  10. #9
    invite4c8f7e37

    Re : Injection / surjection / bijection

    Soit y appartenant à F

    il exite x appartenant à E / y = (fogof)(x) ça marche ça ?

  11. #10
    invitec053041c

    Re : Injection / surjection / bijection

    Citation Envoyé par fusionfroide Voir le message
    Soit y appartenant à F

    il exite x appartenant à E / y = (fogof)(x) ça marche ça ?
    Puisque fogof est surjective évidemment.
    Donc comment déduire f surjective ? (c'est juste un jeu d'écriture désormais)

  12. #11
    invite4c8f7e37

    Re : Injection / surjection / bijection

    il exite x appartenant à E / y = (fogof)(x)

    ==> y = (fogof)(x) ==> y = f(g(f(x))) . on pose g(f(x)) = X

    on trouvé X appartenant à E / y = f(X) donc f surjective

    alors ?

  13. #12
    invitec053041c

    Re : Injection / surjection / bijection

    Citation Envoyé par fusionfroide Voir le message
    il exite x appartenant à E / y = (fogof)(x)

    ==> y = (fogof)(x) ==> y = f(g(f(x))) . on pose g(f(x)) = X

    on trouvé X appartenant à E / y = f(X) donc f surjective

    alors ?
    C'est bien cela.

  14. #13
    invite4c8f7e37

    Re : Injection / surjection / bijection

    Donc admet donc une réciproque bijective

    On a alors bijective ie bijective d'où est injective
    mais aussi bijective ie bijective donc surjective d'où bijective.

    alors ?

  15. #14
    invited04d42cd

    Re : Injection / surjection / bijection

    Des propriétés utiles :
    u o v injective => v injective
    u o v surjective = > u surjective

    Avec ça tu as tout ce qu'il faut

  16. #15
    invite43bf475e

    Re : Injection / surjection / bijection

    un grand classique cet exo, je suis tombé dessus en début d'année!

  17. #16
    invite4c8f7e37

    Re : Injection / surjection / bijection

    Citation Envoyé par M I L A S Voir le message
    un grand classique cet exo, je suis tombé dessus en début d'année!
    oui, surement. Sauf que quand on arrive sans avoir apprit le cours on est dans la merde

    Merci pour l'aide

Discussions similaires

  1. Application, injection et surjection
    Par invite3e257a4d dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 31/10/2007, 22h41
  2. Exercice sur théorie des ensembles, injection, surjection
    Par invite0f34eb03 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 08/10/2007, 17h22
  3. identité, injection, bijection
    Par invitee2d11fd1 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 30/10/2006, 18h49
  4. demonstration injection/surjection sur les fonctions composées
    Par inviteef6f1f3a dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 15/11/2005, 00h00
  5. surjection, injection ensemble de départ et d'arrivée
    Par invite56460777 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 08/11/2004, 10h11