Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

Série entière



  1. #1
    MiMoiMolette

    Série entière


    ------

    Bonswar,

    Alors on a une fonction :



    Et on veut trouver sa série entière associée.

    Et là, que faire ?

    - on remarque qu'on a u'*u et on intègre ? En ce cas, on se retrouve avec le carré d'une somme, et on ne voit pas comment s'en dépêtrer...
    - on connaît les séries entières associées à ln(1+x) et 1/(1+x). En ce cas, pourriez-vous m'expliquer en détail comment effectuer le produit de Cauchy ? (on a trouvé , mais c'est môôôche)

    Toujours par rapport au produit de Cauchy, comment s'y prendre lorsqu'on a une série entière avec des x^(2n) (par exemple) multipliée à une série entière avec des x^n ?

    Mici, vous nous seriez d'une aide assez utile :P

    -----
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  2. Publicité
  3. #2
    God's Breath

    Re : Série entière

    [QUOTE=MiMoiMolette;1488563]
    Citation Envoyé par MiMoiMolette Voir le message
    Alors on a une fonction :



    Et on veut trouver sa série entière associée.

    Et là, que faire ?

    - on remarque qu'on a u'*u et on intègre ? En ce cas, on se retrouve avec le carré d'une somme, et on ne voit pas comment s'en dépêtrer...
    - on connaît les séries entières associées à ln(1+x) et 1/(1+x). En ce cas, pourriez-vous m'expliquer en détail comment effectuer le produit de Cauchy ? (on a trouvé , mais c'est môôôche)
    C'est vrai que c'est pas très joli.
    Dans certains cas, on pourrait envisager d'écrire , puis de dériver :



    et est solution de l'équation différentielle linéaire , dont on cherche les solutions développables en série entière. Encore faudra-t-il pouvoir résoudre la relation de récurrence obtenue pour les coefficients...

    Dans ton cas, le produit de Cauchy fournissant la valeur du coefficient en fonction de la somme partielle de la série harmonique, qui n'admet pas d'expression sympathique, il faut te contenter de ce résultat.

    Citation Envoyé par MiMoiMolette Voir le message
    Toujours par rapport au produit de Cauchy, comment s'y prendre lorsqu'on a une série entière avec des x^(2n) (par exemple) multipliée à une série entière avec des x^n ?

    Mici, vous nous seriez d'une aide assez utile :P
    Il faut introduire des coefficients dans la série qui ne contient que des termes en .
    Si tu fournis un exemple, on peut te montrer comment ça marche pratiquement.

  4. #3
    MiMoiMolette

    Re : Série entière

    Hm, merci beaucoup =)

    Pour la deuxième partie, si je la retrouve, je la mettrai.

    Et pour la première, ça a déjà l'air plus joli avec l'équadiff...m'en vais explorer ça !

    Merci encore
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  5. #4
    God's Breath

    Re : Série entière

    Citation Envoyé par MiMoiMolette Voir le message
    Hm, merci beaucoup =)

    Pour la deuxième partie, si je la retrouve, je la mettrai.

    Et pour la première, ça a déjà l'air plus joli avec l'équadiff...m'en vais explorer ça !

    Merci encore
    L'équation différentielle, c'est une idée à explorer dans d'autres cas.

    Ici, il n'y a pas d'expression plus simple que celle obtenue par le produit de Cauchy, ce qui est déjà bien ; parfois, on n'a même pas d'expression du tout pour les coefficients de la série.

  6. A voir en vidéo sur Futura
  7. #5
    MiMoiMolette

    Re : Série entière

    Et en ce cas, on a juste à dire que les coefficients sont définis par le produit de Cauchy ?

    Enfin ce qui m'intrigue, c'est que cette fonction ne serait qu'un exercice d'application...Pourquoi serait-ce aussi compliqué... !

    Pour l'équadiff, j'ai regardé le début, je vais me retrouver avec des et je crois :/ si j'suis un brin masochiste, je vais continuer ça

    Et pour le produit de Cauchy avec des ^(2n) et ^n...je ne trouve plus l'énoncé ni le brouillon, dommage...

    Merci encore,
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  8. #6
    MiMoiMolette

    Re : Série entière

    ^o^


    et


    C'est ben mignon, mais je crois que je me contenterai de ma somme partielle harmonique
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  9. Publicité
  10. #7
    God's Breath

    Re : Série entière

    Citation Envoyé par MiMoiMolette Voir le message
    ^o^


    et


    C'est ben mignon, mais je crois que je me contenterai de ma somme partielle harmonique
    Comme , tu as , d'où , puis , , ...

    Ce sont vraiment les bonnes valeurs ?

  11. #8
    MiMoiMolette

    Re : Série entière

    Euuuh... De prime abord, ça pourrait être bizarre, je n'ai pas vérifié en réalité... j'y vais de ce pas.


    Edit : mwai, pour n=2 je trouve déjà 1/2 avec l'harmonique...
    n=3 -> 5/6

    Je vais remettre ça à demain

    Encore M... ^^
    Dernière modification par MiMoiMolette ; 14/01/2008 à 22h07.
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  12. #9
    MiMoiMolette

    Re : Série entière

    Ah tiens...si je prends le dénominateur d'un terme et le numérateur du suivant, j'ai les bons termes

    Si on décale d'un jour, la suite se décalera peut-être d'elle-même xD

    Hop ! *bouton rouge*
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  13. #10
    Gwyddon

    Re : Série entière

    Hello,

    Pour ma part je trouve comme récurrence :



    pour
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  14. #11
    Médiat

    Re : Série entière

    Citation Envoyé par Gwyddon Voir le message
    Pour ma part je trouve comme récurrence :



    pour
    Salut,
    Je trouve :

    et
    pour

    J'ai bien dû me planter quelque part
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  15. #12
    MiMoiMolette

    Re : Série entière

    On est trop forts

    Bon...énième test cet aprèm, on verra ^^
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  16. Publicité
  17. #13
    Gwyddon

    Re : Série entière

    Si ça ce n'est pas merveilleux ^^

    Alors petite remarque : plus le nombre de gens qui trouvent un truc différent grandit, plus la probabilité que la bonne réponse soit dedans grandit aussi. On est donc sur la bonne voie
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  18. #14
    Médiat

    Re : Série entière

    Citation Envoyé par Gwyddon Voir le message


    pour
    Gwyddon ou comment faire compliqué quand on peut faire simple.

    Tu ne pensais quand même pas que je ne vengerais pas, hein fiston !
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  19. #15
    Gwyddon

    Re : Série entière

    Euh, alors c'est juste ce que j'ai trouvé ou c'est complètement bidon ?

    mais qu'est-ce qui m'a pris de refaire des séries entières, je me le demande...
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  20. #16
    Médiat

    Re : Série entière

    Citation Envoyé par Gwyddon Voir le message
    Euh, alors c'est juste ce que j'ai trouvé ou c'est complètement bidon ?
    En tout cas ma solution entraîne la tienne (et j'ai vérifié la mienne, merci Excel)

    Citation Envoyé par Gwyddon Voir le message
    mais qu'est-ce qui m'a pris de refaire des séries entières, je me le demande...
    +1, mais comment ne pas répondre à MiMoiMolette ?
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  21. #17
    Gwyddon

    Re : Série entière

    En effet ta solution implique la mienne... Mais je doute du retour

    +1, mais comment ne pas répondre à MiMoiMolette ?
    En effet
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  22. #18
    Gwyddon

    Re : Série entière

    Citation Envoyé par Gwyddon Voir le message
    En effet ta solution implique la mienne... Mais je doute du retour
    En fait le retour nécessite l'invocation du théorème de Cauchy sur l'équadiff du départ je pense

    Bref prenons la proposition de Médiat (qui se trouve par (1+x)f'(x)+f(x) = 1/(1+x) )
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  23. Publicité
  24. #19
    MiMoiMolette

    Re : Série entière

    En effet,

    En effet,

    Et en effet

    J'ai trouvé la même chose que le guidon (tout bien démontré et expliqué si vous voulez), sauf le coup du a1+a2=-1/2.
    Après d'intenses réflexions bilatérales, mais chacun dans sa tête, nous avons conclu que... Ca ne mène à rien !


    Merci à vous tous en tout cas =)

    m'en vais chercher l'adresse du prof qui a fait l'exo, casser la baraque, prendre femmes et enfant en otage et...
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  25. #20
    Gwyddon

    Re : Série entière

    Citation Envoyé par MiMoiMolette Voir le message
    J'ai trouvé la même chose que le guidon (tout bien démontré et expliqué si vous voulez), sauf le coup du a1+a2=-1/2.
    Cool alors, et pour le a1+a2=-1/2 j'ai réutilisé le a0+a1=1

    Après d'intenses réflexions bilatérales, mais chacun dans sa tête, nous avons conclu que... Ca ne mène à rien !
    Cool, c'est ça les maths
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

Discussions similaires

  1. Développement en série entière
    Par rififi12 dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 02/01/2008, 17h18
  2. somme de série entière
    Par nemesis00 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 02/03/2007, 23h06
  3. Série entière
    Par Manolack dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 28/11/2006, 21h04
  4. Série entière !
    Par nassoufa_02 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 16/11/2006, 21h28
  5. série entière complexe
    Par christophe_de_Berlin dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 09/02/2006, 10h31