Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

factorielles



  1. #1
    thal_a

    factorielles


    ------

    Salut joyeux matheux!

    Comment montrer que (2m)! (2n)! / (m! n! (m+n)! ) est un entier ?

    -----

  2. Publicité
  3. #2
    ThSQ

    Re : factorielles

    Citation Envoyé par thal_a Voir le message
    (2m)! (2n)! / (m! n! (m+n)! ) est un entier
    Classiquement en utilisant la formule de Legendre : http://fr.wikipedia.org/wiki/Factorielle

    Soit p est premier.

    L'exposent de p du numérateur est :
    L'exposent de p du dénominteur est :

    Il suffit donc de montrer que ce qui est facile.

  4. #3
    zoonel

    Re : factorielles

    Salut,
    On peut pas
     Cliquez pour afficher

  5. #4
    Josszzz

    Re : factorielles

    Citation Envoyé par zoonel Voir le message
    Salut,
    On peut pas
    m=20
    n=13
    Si si, ça marche, on trouve 2501344300

    Peut-être as-tu utilisé une calculatrice pour effectuer le calcul, et pas assez de chiffres significatifs?

  6. A voir en vidéo sur Futura
  7. #5
    God's Breath

    Re : factorielles

    Citation Envoyé par zoonel Voir le message
    On peut pas
    Si on peut !!!
     Cliquez pour afficher

Discussions similaires

  1. Equivalents factorielles (ou DL)
    Par Nox dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 31/07/2006, 09h27
  2. Cube avec factorielles
    Par Herbiti dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 30/12/2005, 17h20
  3. factorielles
    Par Rifly01 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 22/12/2005, 09h25
  4. Factorielles
    Par Itachiki dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 29/01/2005, 20h26
  5. Polynômes du second degré + factorielles
    Par Sorya dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 07/10/2004, 19h18